In general ELU > leaky ReLU(and its variants) > ReLU > tanh > logistic. If you care a lot about runtime performance, then you may prefer leaky ReLUs over ELUs. If you don't want to tweak yet another hyperparameter, you may just use the default $\alpha$ value suggested earlier(0.01 for the leaky ReLU, and 1 for ELU). If you have spare time and computing power, you can use cross-validation to evaluate other activation functions, in particular RReLU if your network is overfitting, or PReLU if you have a huge training set.

ReLU

\begin{equation}
ReLU(z) = max(0, z)
\end{equation}

tf.nn.relu
import matplotlib.pyplot as plt
import numpy as np def relu(z):
return np.maximum(0, z) z = np.linspace(-5, 5, 200)
plt.plot(z, relu(z), "r--", linewidth=2)
props = dict(facecolor='black', shrink=0.1)
plt.annotate('ReLU', xytext=(-3.5, 0.5), xy=(-5, 0.1), arrowprops=props, fontsize=14, ha="center")
plt.title("ReLU activation function", fontsize=14)
plt.plot([-5, 5], [0, 0], 'k-')
plt.plot([0, 0], [-0.5, 4.2], 'k-')
plt.grid(True)
plt.axis([-5, 5, -0.5, 4.2]) plt.tight_layout()
plt.show()

leaky ReLU

\begin{equation}
LeakyReLU_{\alpha}(z) = max(\alpha z, z)
\end{equation}

nn.leaky_relu
import matplotlib.pyplot as plt
import numpy as np def leaky_relu(z, alpha=0.01):
return np.maximum(alpha*z, z) z = np.linspace(-5, 5, 200)
plt.plot(z, leaky_relu(z, 0.05), "b-", linewidth=2)
plt.plot([-5, 5], [0, 0], 'k-')
plt.plot([0, 0], [-0.5, 4.2], 'k-')
plt.grid(True)
props = dict(facecolor='black', shrink=0.1)
plt.annotate('Leak', xytext=(-3.5, 0.5), xy=(-5, -0.2), arrowprops=props, fontsize=14, ha="center")
plt.title("Leaky ReLU activation function", fontsize=14)
plt.axis([-5, 5, -0.5, 4.2]) plt.tight_layout()
plt.show()

ELU

\begin{equation}
\label{b}
ELU(z)=
\begin{cases}
\alpha(e^{z} - 1) & if\ z < 0 \\
z & if\ z\ge 0
\end{cases}
\end{equation}

tf.nn.elu
import matplotlib.pyplot as plt
import numpy as np def elu(z, alpha=1):
return np.where(z < 0, alpha * (np.exp(z) - 1), z) z = np.linspace(-5, 5, 200)
plt.plot(z, elu(z), "g-", linewidth=2)
plt.plot([-5, 5], [0, 0], 'k-')
plt.plot([-5, 5], [-1, -1], 'k--')
plt.plot([0, 0], [-2.2, 3.2], 'k-')
plt.grid(True)
plt.title(r"ELU activation function ($\alpha=1$)", fontsize=14)
plt.axis([-5, 5, -2.2, 3.2]) plt.tight_layout()
plt.show()

Relu6

\begin{equation}
ReLU6(z) =  min(max(z, 0), 6)
\end{equation}

tf.nn.relu6

Swish

\begin{equation}
Swish(z) =  z*sigmoid(\beta z)
\end{equation}

def swish(x, b = 1):
return x * tf.nn.sigmoid(b * x)
import matplotlib.pyplot as plt
import numpy as np def swish(z, b=1):
return z/(1+np.exp(-b*z)) z = np.linspace(-5, 5, 200)
plt.plot(z, swish(z), "g--", linewidth=2)
plt.plot([-5, 5], [0, 0], 'k-')
plt.plot([0, 0], [-0.5, 5.2], 'k-')
plt.grid(True)
plt.title(r"Swish activation function", fontsize=14)
plt.axis([-5, 5, -0.5, 5.2]) plt.tight_layout()
plt.show()

简单训练 MNIST

import tensorflow as tf
def Swish(features):
return features*tf.nn.sigmoid(features) # 1. create data
from tensorflow.examples.tutorials.mnist import input_data
mnist = input_data.read_data_sets('../MNIST_data', one_hot=True) X = tf.placeholder(tf.float32, shape=(None, 784), name='X')
y = tf.placeholder(tf.int32, shape=(None), name='y') # 2. define network
with tf.name_scope('dnn'):
hidden1 = tf.layers.dense(X, 300, activation=Swish, name='hidden1')
hidden2 = tf.layers.dense(hidden1, 100, activation=Swish, name='hidden2')
logits = tf.layers.dense(hidden2, 10, name='output')
# prob = tf.layers.dense(hidden2, 10, tf.nn.softmax, name='prob') # 3. define loss
with tf.name_scope('loss'):
# tf.losses.sparse_softmax_cross_entropy() label is not one_hot and dtype is int*
# xentropy = tf.losses.sparse_softmax_cross_entropy(labels=tf.argmax(y, axis=1), logits=logits)
# tf.nn.sparse_softmax_cross_entropy_with_logits() label is not one_hot and dtype is int*
# xentropy = tf.nn.sparse_softmax_cross_entropy_with_logits(labels=tf.argmax(y, axis=1), logits=logits)
# loss = tf.reduce_mean(xentropy)
loss = tf.losses.softmax_cross_entropy(onehot_labels=y, logits=logits) # label is one_hot # 4. define optimizer
learning_rate = 0.01
with tf.name_scope('train'):
optimizer_op = tf.train.GradientDescentOptimizer(learning_rate).minimize(loss) with tf.name_scope('eval'):
correct = tf.nn.in_top_k(logits, tf.argmax(y, axis=1), 1) # 目标是否在前K个预测中, label's dtype is int*
accuracy = tf.reduce_mean(tf.cast(correct, tf.float32)) # 5. initialize
init_op = tf.group(tf.global_variables_initializer(), tf.local_variables_initializer())
saver = tf.train.Saver() # 5. train & test
n_epochs = 20
n_batches = 50
batch_size = 50 with tf.Session() as sess:
sess.run(init_op)
for epoch in range(n_epochs):
for iteration in range(mnist.train.num_examples // batch_size):
X_batch, y_batch = mnist.train.next_batch(batch_size)
sess.run(optimizer_op, feed_dict={X: X_batch, y: y_batch})
acc_train = accuracy.eval(feed_dict={X: X_batch, y: y_batch}) # 最后一个 batch 的 accuracy
acc_test = accuracy.eval(feed_dict={X: mnist.test.images, y: mnist.test.labels})
loss_test = loss.eval(feed_dict={X: mnist.test.images, y: mnist.test.labels})
print(epoch, "Train accuracy:", acc_train, "Test accuracy:", acc_test, "Test loss:", loss_test)
save_path = saver.save(sess, "./my_model_final.ckpt") # with tf.Session() as sess:
# sess.run(init_op)
# saver.restore(sess, "./my_model_final.ckpt")
# acc_test = accuracy.eval(feed_dict={X: mnist.test.images, y: mnist.test.labels})
# loss_test = loss.eval(feed_dict={X: mnist.test.images, y: mnist.test.labels})
# print("Test accuracy:", acc_test, ", Test loss:", loss_test) """
tf.sigmoid 0.9062
tf.tanh 0.9611
tf.relu 0.9713
tf.nn.leaky_relu 0.9674
tf.nn.elu 0.9613
Swish 0.9605
"""

初始化方式

tensorflow\python\ops\init_ops.py

zeros_initializer = Zeros
ones_initializer = Ones
constant_initializer = Constant
random_uniform_initializer = RandomUniform
random_normal_initializer = RandomNormal
truncated_normal_initializer = TruncatedNormal
uniform_unit_scaling_initializer = UniformUnitScaling
variance_scaling_initializer = VarianceScaling
glorot_uniform_initializer = GlorotUniform
glorot_normal_initializer = GlorotNormal
orthogonal_initializer = Orthogonal
identity_initializer = Identity
convolutional_delta_orthogonal = ConvolutionDeltaOrthogonal
convolutional_orthogonal_1d = ConvolutionOrthogonal1D
convolutional_orthogonal_2d = ConvolutionOrthogonal2D
convolutional_orthogonal_3d = ConvolutionOrthogonal3D

random_uniform_initializer

生成均匀分布的随机数

__init__(
minval=0,
maxval=None,
seed=None,
dtype=tf.dtypes.float32
)

random_normal_initializer

生成标准正态分布的随机数

__init__(
mean=0.0,
stddev=1.0,
seed=None,
dtype=tf.dtypes.float32
)

truncated_normal_initializer

生成截断正态分布的随机数,参数同 random_normal_initializer

uniform_unit_scaling_initializer

和均匀分布差不多,只是这个初始化方法不需要指定最小最大值,是通过计算出来的。参数为(factor=1.0, seed=None, dtype=dtypes.float32)

max_val = math.sqrt(3 / input_size) * self.factor

variance_scaling_initializer

综合体

__init__(self,
scale=1.0,
mode="fan_in",
distribution="truncated_normal",
seed=None,
dtype=dtypes.float32)
scale = self.scaleif self.mode == "fan_in":
scale /= max(1., fan_in)
elif self.mode == "fan_out":
scale /= max(1., fan_out)
else:
scale /= max(1., (fan_in + fan_out) / 2.)
if self.distribution == "normal" or self.distribution == "truncated_normal":
# constant taken from scipy.stats.truncnorm.std(a=-2, b=2, loc=0., scale=1.)
stddev = math.sqrt(scale) / .87962566103423978
return random_ops.truncated_normal(
shape, 0.0, stddev, dtype, seed=self.seed)
elif self.distribution == "untruncated_normal":
stddev = math.sqrt(scale)
return random_ops.random_normal(shape, 0.0, stddev, dtype, seed=self.seed)
else:
limit = math.sqrt(3.0 * scale)
return random_ops.random_uniform(
shape, -limit, limit, dtype, seed=self.seed)

glorot_uniform_initializerglorot_normal_initializer

标准的 Xavier 初始化方式

limit = sqrt(6 / (fan_in + fan_out))
stddev = sqrt(2 / (fan_in + fan_out))

TensorFlow使用记录 (五): 激活函数和初始化方式的更多相关文章

  1. TensorFlow函数(五)参数初始化方法

    1.初始化为常量 tf.constant_initializer(value, dtype) 生成一个初始值为常量value的tensor对象 value:指定的常量 dtype:数据类型 tf.ze ...

  2. tensorflow笔记(五)之MNIST手写识别系列二

    tensorflow笔记(五)之MNIST手写识别系列二 版权声明:本文为博主原创文章,转载请指明转载地址 http://www.cnblogs.com/fydeblog/p/7455233.html ...

  3. C++的各种初始化方式

    C++小实验测试:下面程序中main函数里a.a和b.b的输出值是多少? #include <iostream> struct foo { foo() = default; int a; ...

  4. C++ vector初始化方式

    C++的初始化方法很多,各种初始化方法有一些不同. (1): vector<int> ilist1; 默认初始化,vector为空, size为0,表明容器中没有元素,而且 capacit ...

  5. TensorFlow使用记录 (七): BN 层及 Dropout 层的使用

    参考:tensorflow中的batch_norm以及tf.control_dependencies和tf.GraphKeys.UPDATE_OPS的探究 1. Batch Normalization ...

  6. TensorFlow使用记录 (六): 优化器

    0. tf.train.Optimizer tensorflow 里提供了丰富的优化器,这些优化器都继承与 Optimizer 这个类.class Optimizer 有一些方法,这里简单介绍下: 0 ...

  7. TensorFlow使用记录 (一): 基本概念

    基本使用 使用graph来表示计算任务 在被称之为Session的上下文中执行graph 使用tensor表示数据 通过Variable维护状态 使用feed和fetch可以为任意的操作(op)赋值或 ...

  8. 源码详解openfire保存消息记录_修改服务端方式

    实现openfire消息记录通常有两种方式,修改服务端和添加消息记录插件. 今天,简单的说明一下修改服务端方式实现消息记录保存功能. 实现思路 修改前: 默认的,openfire只提供保存离线记录至o ...

  9. C基础--结构体成员初始化方式

    之前在linux内核代码中看到结构体成员成员初始化使用类似于.owner = THIS_MODULE, 不太见过,于是搜了个博客,分享下: 转自:http://www.cnblogs.com/Anke ...

随机推荐

  1. 使用Iview时候 报:no-parsing-error Parsing error: x-invalid-end-tag 解决办法

    解决办法有两种解决办法: 1.MenuItem修改为:menu-item 2.在根目录下 .eslintrc.js 文件 rules 下添加: "vue/no-parsing-error&q ...

  2. CSP2019螺旋升天爆炸记

    Day -N 半年没碰OI的我终于又回到了这个熟悉又陌生的地方.然后颓废了两天就过了初赛? 初赛rp爆棚考了全校第一,然并卵 然后就是打了遍树状数组模板,写挂了(没错我现在连树状数组都会写挂) 看一眼 ...

  3. 21-Perl 发送邮件

    1.Perl 发送邮件如果你的程序在 Linux/Unix 系统上运行,你就可以在 Perl 中使用 sendmail 工具来发送邮件.以下是一个简单的脚本实例用于发送邮件:#!/usr/bin/pe ...

  4. C#委托的定义 以及使用方式详解,更简单的理解委托。

    委托的声明及定义: 委托是一个类,它定义了方法的类型,使得可以将方法当作另一个方法的参数来进行传递,这种将方法动态地赋给参数的做法,可以避免在程序中大量使用If-Else(Switch)语句,同时使得 ...

  5. 弹窗插件 layer

    官方网站 http://layer.layui.com/ Github 地址 https://github.com/sentsin/layer //在这里面输入任何合法的js语句 layer.open ...

  6. oracle sqlplus执行sql语句字符集问题

    因为业务需要,现将一些包含中文的insert语句导入到oracle数据库中,由于数据量比较大,通过pl/sql*plus导入时非常慢(实测1.5M的文件大概执行20分钟),现在oracle服务器sql ...

  7. O031、Start Instance 操作详解

    参考https://www.cnblogs.com/CloudMan6/p/5470723.html   本节将通过日志文件分析 instance start 的操作过程,下面是 start inst ...

  8. kali破解ssh

    hydra,是一个非常好用的暴力破解工具,而且名字也很cool. 下面是官网上的介绍: AFP, Cisco AAA, Cisco auth, Cisco enable, CVS, Firebird, ...

  9. react中怎么写css样式?

    JSX基本语法中关于react如何写css样式主要有三种方法 1.基于class --(className) 基于className ,通过className在style中给该class名的DOM元素 ...

  10. Java学习笔记【九、集合框架】

    集合框架设计的目标: 高性能. 允许不同类型的集合,以类似的方式工作,有互操作性. 对一个集合的扩展和适应必须简单. 集合框架包含: 接口:代表集合的抽象数据类型. 实现(类):具体实现(ArrayL ...