Pseudoprime numbers
Time Limit: 1000MS
Memory Limit: 65536K
Total Submissions: 7954
Accepted: 3305

Description

Fermat's theorem states that for any prime number p and for any integer a > 1, ap = a (mod p). That is, if we raise a to the pth power
and divide by p, the remainder is a. Some (but not very many) non-prime values of p, known as base-apseudoprimes, have this property for some a. (And some, known as Carmichael Numbers, are base-a pseudoprimes
for all a.)

Given 2 < p ≤ 1000000000 and 1 < a < p, determine whether or not p is a base-a pseudoprime.

Input

Input contains several test cases followed by a line containing "0 0". Each test case consists of a line containing p anda.

Output

For each test case, output "yes" if p is a base-a pseudoprime; otherwise output "no".

Sample Input

3 2
10 3
341 2
341 3
1105 2
1105 3
0 0

Sample Output

no
no
yes
no
yes
yes
<span style="font-size:32px;">#include<iostream>
#include<cstdio>
#include<cstring>
#include<cmath>
using namespace std;
long long a,p;
long long power(long long a,long long p)
{
long long ret=1,temp=p;
while(temp)
{
if(temp&1)
ret=(ret*a)%p;
a=(a*a)%p;
temp>>=1;
}
return ret%p;
}
bool prime(long long m)
{
for(long long i=2;i*i<=m;i++)
if(m%i==0)
return false;
return true;
}
int main()
{
long long a,p;
while(~scanf("%lld %lld",&p,&a))
{
if(a==0&&p==0) return 0;
if(power(a,p)==a%p&&!prime(p))
printf("yes\n");
else
printf("no\n");
}
return 0;
}
</span>

poj 3641 Pseudoprime numbers 快速幂+素数判定 模板题的更多相关文章

  1. POJ3641 Pseudoprime numbers(快速幂+素数判断)

    POJ3641 Pseudoprime numbers p是Pseudoprime numbers的条件: p是合数,(p^a)%p=a;所以首先要进行素数判断,再快速幂. 此题是大白P122 Car ...

  2. POJ 3641 Pseudoprime numbers (数论+快速幂)

    题目链接:POJ 3641 Description Fermat's theorem states that for any prime number p and for any integer a ...

  3. poj 3641 Pseudoprime numbers

    题目连接 http://poj.org/problem?id=3641 Pseudoprime numbers Description Fermat's theorem states that for ...

  4. poj 3641 Pseudoprime numbers(快速幂)

    Description Fermat's theorem states that for any prime number p and for any integer a > 1, ap = a ...

  5. POJ 3641 Pseudoprime numbers (miller-rabin 素数判定)

    模板题,直接用 /********************* Template ************************/ #include <set> #include < ...

  6. poj 3641 Pseudoprime numbers Miller_Rabin测素裸题

    题目链接 题意:题目定义了Carmichael Numbers 即 a^p % p = a.并且p不是素数.之后输入p,a问p是否为Carmichael Numbers? 坑点:先是各种RE,因为po ...

  7. POJ 3070 Fibonacci 矩阵快速幂模板

    Fibonacci Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 18607   Accepted: 12920 Descr ...

  8. HDU 3641 Pseudoprime numbers(快速幂)

    Pseudoprime numbers Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 11336   Accepted: 4 ...

  9. 【UVA - 10006 】Carmichael Numbers (快速幂+素数筛法)

    -->Carmichael Numbers  Descriptions: 题目很长,基本没用,大致题意如下 给定一个数n,n是合数且对于任意的1 < a < n都有a的n次方模n等于 ...

随机推荐

  1. spring 的工厂类

    spring 的工厂类 1. 工厂类 BeanFactory 和 ApplicationContext 的区别. ApplicationContext 是 BeanFactory 的子接口,提供了比父 ...

  2. mysql创建表空间和用户

    创建表空间名 create database 空间名 default character set utf8 collate utf8_bin; 创建用户create user 用户名 identifi ...

  3. Scala学习十——特质

    一.本章要点 类可以实现任意数量的特质 特质可以要求实现它们的类具备特定的字段,方法或超类 和Java接口不同,Scala特质可以提供方法和字段实现 当你将多个特质叠加在一起时,顺序很重要——其方法先 ...

  4. javascript——加强for循环 和Java中的加强for循环的区别

    javascript中获得的是下标      in var id=[4,5,6]; for (var index in id) { console.log(id[index]); } Java中获得的 ...

  5. asp.net 3.三层架构

    1.新建项目和类库 CZBK.ItcastProject (空白项目) CZBK.ItcastProject.BLL (类库) -- 逻辑业务 CZBK.ItcastProject.Common (类 ...

  6. react绑定事件的几种写法

    方法一:最麻烦的写法,不推荐 import React from 'react'; class App extends React.Component { handleClick() { alert( ...

  7. STL之Deque的使用方法

    STL 中类 stack 实现了一个栈 1)push 能够插入元素 2)pop 移除栈顶元素 使用的时候,需要包含头文件 #include <stack>,stack 被声明如下: nam ...

  8. char 、 unsigned char 互相转化

    1. 利用unsigned char (即uchar) 保存char 数据  ,直接赋值即可 unsigned char uc; char c=-33; uc= c; cout<<(int ...

  9. hadoop面试题(自己整理版)

    1. hadoop 运行原理2. mapreduce 原理3. mapreduce 的优化4.举一个简单的例子说下 mapreduce 是怎么运行的5. hadoop 中 combiner 的作用6. ...

  10. sass之mixin的全局引入(vue3.0)

    sass之mixin的全局引入(vue3.0) 1.scss文件(mixin.scss) /* 渐变 */ @mixin gradual($color, $color1){ background: $ ...