AI学习笔记——卷积神经网络(CNN)

image.png

上篇文章简单地地介绍了神经网络和深度学习,在神经网络中,每一层的每个神经元都与下一层的每个神经元相连(如下图), 这种连接关系叫全连接(Full Connected)。如果以图像识别为例,输入就是是每个像素点,那么每一个像素点两两之间的关系(无论相隔多远),都被下一层的神经元"计算"了。

这种全连接的方法用在图像识别上面就显得太"笨"了,因为图像识别首先得找到图片中各个部分的"边缘"和"轮廓",而"边缘"和"轮廓"只与相邻近的像素们有关。

这个时候卷积神经网络(CNN)就派上用场了,卷积神经网络可以简单地理解为,用滤波器(Filter)将相邻像素之间的"轮廓"过滤出来。

image.png

卷积(Convolution)

卷积的滤波器(Filter)是如何工作的呢?以下图,一个6x6的图片被一个3x3的滤波器(可以看成一个窗口)卷积为例,3x3的滤波器先和6x6的图片最左上角的3x3矩阵卷积得到结果后,再向右移一步继续卷积(窗口滑动),直到将整个图片过滤完成,输出一个4x4的矩阵(图片)。

image.png

这样有什么意义呢?如果如下图所示,被卷积的图片有明显的竖直轮廓(10和0之间有一轮廓,这条轮廓需要被标记出来),用3x3的竖直轮廓滤波器卷积之后,就能发现中间那条非常明显的竖直轮廓(中间30的两个竖排矩阵将竖直的轮廓位置明显地标记了出来)。

image.png

填充(Padding)

上面的例子用3x3的将6x6的图片过滤之后输出了一个4x4的图片,那如果我想保证输入和输出的图片尺寸一致怎么办?这个时候我们可以在原图片的边缘进行填充(Padding),以保证输入和输出的图片尺寸一致。下图就是用0在原图上Padding了一圈。

image.png

步长 (Stride)

上面提到用3x3的过滤器去卷积6x6的图片是通过窗口一步一步的移动最终将整个图片卷积完成的,实际上移动的步伐可以迈得更大,这个步伐的长度就叫做步长(Stride)。步长(Stride)和填充(Padding)的大小一起决定了输出层图像的尺寸。

image.png

深度(Depth)

这里的深度是指输出层图片的深度,通常图片有红绿蓝(RGB)三个颜色通道(Channel),那一个滤波器也需要三层滤波器对每个颜色通道进行过滤,于是6x6x3的图片经过3x3x3的滤波器过滤之后最终会得到一个4x4x1的图片,此时输出层图片的深度就是1。

image.png

增加滤波器的个数就能增加输出层图片的深度,同时滤波器的个数也决定了输出层图片的深度(两者相等)。下图两个3x3x3的滤波器将6x6x3的图片过滤得到一个4x4x2的图片。

image.png

单层完整的CNN

全连接的DNN,每一层包含一个线性函数和一个激活函数,CNN也一样,在滤波器之后还需要一个激活层,在图像识别应用中,激活层通常用的是Relu函数。线性函数有权重W和偏置b,CNN的权重W就是滤波器的数值,偏置b可以加在Relu之后,一个完整的CNN层如下:

image.png

池化(Pooling)

用滤波器进行窗口滑动过程中,�实际上"重叠"计算了很多冗余的信息,而池化操作就是去除这些冗余信息,并加快运动。Pooling的方式其实有多种,用的最多的是max-pooling就是取一个区域中最大的值,如图将一个4x4的图片max-pooling 一个2x2的图片。

image.png

一个完整的深度CNN网络

一个完整的深度CNN网络,通常由多个卷积层加池化层和最后一个或多个完整层(Full connected(FC))构成,如图:

image.png

好了,深度卷积神经网络就介绍完了,中间引入了不少概念,理解了这些概念其实CNN网络也十分简单。

转自:https://www.jianshu.com/p/49b70f6480d1

deep_learning_CNN的更多相关文章

随机推荐

  1. BN和L2 NORM的区别

    bn是拉平各个feature的差异,而l2 norm是拉平各个样本的差异,本来各个样本的模长千变万化,按照距离的概念,差别是很大的,但是l2 norm后,距离就变得有一个上界了,显然样本间差异变小了. ...

  2. java数据结构之ConcurrentHashMap

    大神博客:https://www.cnblogs.com/study-everyday/p/6430462.html https://baijiahao.baidu.com/s?id=16170899 ...

  3. Kubernetes web界面kubernetes-dashboard安装【h】

    本文讲述的是如何部署K8s的web UI,前提是已经有一个k8s集群后,按照如下步骤进行即可.(如下步骤都是在master节点上进行操作) 1.下载kubernetes-dashboard.yaml文 ...

  4. 机器学习笔记——模型调参利器 GridSearchCV(网格搜索)参数的说明

    GridSearchCV,它存在的意义就是自动调参,只要把参数输进去,就能给出最优化的结果和参数.但是这个方法适合于小数据集,一旦数据的量级上去了,很难得出结果.这个时候就是需要动脑筋了.数据量比较大 ...

  5. 【VS开发】list控件的InsertColumn方法出错

    今天在写一个获取磁盘信息的小程序,通过list控件显示各磁盘信息.我在属性页(CPropertyPage)的构造函数中,调用list控件的InsertColumn方法,编译链接都通过了,但运行时冒出了 ...

  6. 【科普杂谈】IP地址子网划分

    1.学习子网前的准备知识-什么是数制 现场讲解版 二进制和十进制的关系   二进制和十六进制的关系  16进制的每个位是2进制的4位 F=1111  二进制转16进制,按上面4位一组分开转 2.IP地 ...

  7. element UI实现动态生成多级表头

    一.效果图 二.封装两个组件,分别为DynamicTable.vue和TableColumn.vue,TableColumn.vue主要是使用递归来对表头进行循环生成 DynamicTable.vue ...

  8. IntelliJ IDEA 2019.2.1 破解教程, 最新激活码(激活到2089年8月,亲测有效,持续更新中...)

    当前最新版本 IDEA 2019.2.1 本来笔者这边是有个正版激活码可以使用的,但是,2019.9月3号的时候,一些小伙伴反映这个注册码已经失效了,于是拿着自己的 IDEA, 赶快测试了一下,果不其 ...

  9. SpringBoot消息队列之-rabbitMQ

    一.概述 1.在大多应用中,我们系统之间需要进行异步通信,即异步消息. 2.异步消息中两个重要概念:消息代理(message broker)和目的地(destination) 当消息发送者发送消息以后 ...

  10. linux-32bit-内存管理

    一.进程与内存 进程如何使用内存? 毫无疑问所有进程(执行的程序)都必须占用一定数量的内存,它或是用来存放从磁盘载入的程序代码,或是存放取自用户输入的数据等等.不过进程对这些内存的管理方式因内存用途不 ...