【换根dp】9.22小偷
换根都不会了
题目大意
给定一棵$n$个点的树和树上一撮关键点,求到所有$m$个关键点距离的最大值$dis_{max}\le LIM$的点的个数。
$n,m\le 30000,LIM\le 30000$
题目分析
考虑在求出一个点的情况下如何转移到其子节点。
对点$u$最直接关心的状态是$mx[u]$:所有关键点到$u$的最大距离。
对点$u$的子节点$v$来说,$u$能带给它的只是“外面的世界”——$v$子树的补集这块贡献,也就是对于$u$的除了$v$子树的$mx[u]$。
因为$mx[u]$的值只会是"从/不从$v$转移"两个状态,那么相当于需要辅助记一个$dx[u]$:所有关键点到$u$的可重次大距离。
这样做两遍dfs就可以实现换根的dp了。
#include<bits/stdc++.h>
const int maxn = ;
const int maxm = ; int n,m,lim,ans,sum,p[maxn],mx[maxn],dx[maxn];
int edgeTot,head[maxn],nxt[maxm],edges[maxm];
bool tag[maxn]; int read()
{
char ch = getchar();
int num = , fl = ;
for (; !isdigit(ch); ch=getchar())
if (ch=='-') fl = -;
for (; isdigit(ch); ch=getchar())
num = (num<<)+(num<<)+ch-;
return num*fl;
}
void addedge(int u, int v)
{
edges[++edgeTot] = v, nxt[edgeTot] = head[u], head[u] = edgeTot;
edges[++edgeTot] = u, nxt[edgeTot] = head[v], head[v] = edgeTot;
}
void dfs1(int x, int fa)
{
mx[x] = dx[x] = -;
if (tag[x]) mx[x] = ;
for (int i=head[x]; i!=-; i=nxt[i])
{
int v = edges[i];
if (v==fa) continue;
dfs1(v, x);
if (mx[v]!=-&&mx[v]+ >= mx[x]) dx[x] = mx[x], mx[x] = mx[v]+;
else if (mx[v]!=-&&mx[v]+ > dx[x]) dx[x] = mx[v]+;
}
}
void dfs2(int x, int fa)
{
for (int i=head[x]; i!=-; i=nxt[i])
{
int v = edges[i], val = ;
if (v==fa) continue;
if (mx[x]==mx[v]+&&mx[v]!=-) val = dx[x]+;
else val = mx[x]+;
if (val&&val >= mx[v]) dx[v] = mx[v], mx[v] = val;
else if (val&&val > dx[v]) dx[v] = val;
dfs2(v, x);
}
if (mx[x] <= lim) ++ans;
}
int main()
{
memset(head, -, sizeof head);
n = read(), m = read(), lim = read();
for (int i=; i<=m; i++) tag[read()] = true;
for (int i=; i<n; i++) addedge(read(), read());
dfs1(, );
dfs2(, );
printf("%d\n",ans);
return ;
}
END
【换根dp】9.22小偷的更多相关文章
- [BZOJ4379][POI2015]Modernizacja autostrady[树的直径+换根dp]
题意 给定一棵 \(n\) 个节点的树,可以断掉一条边再连接任意两个点,询问新构成的树的直径的最小和最大值. \(n\leq 5\times 10^5\) . 分析 记断掉一条边之后两棵树的直径为 \ ...
- 2018.10.15 NOIP训练 水流成河(换根dp)
传送门 换根dp入门题. 貌似李煜东的书上讲过? 不记得了. 先推出以1为根时的答案. 然后考虑向儿子转移. 我们记f[p]f[p]f[p]表示原树中以ppp为根的子树的答案. g[p]g[p]g[p ...
- 换根DP+树的直径【洛谷P3761】 [TJOI2017]城市
P3761 [TJOI2017]城市 题目描述 从加里敦大学城市规划专业毕业的小明来到了一个地区城市规划局工作.这个地区一共有ri座城市,<-1条高速公路,保证了任意两运城市之间都可以通过高速公 ...
- 小奇的仓库:换根dp
一道很好的换根dp题.考场上现场yy十分愉快 给定树,求每个点的到其它所有点的距离异或上m之后的值,n=100000,m<=16 只能线性复杂度求解,m又小得奇怪.或者带一个log像kx一样打一 ...
- 国家集训队 Crash 的文明世界(第二类斯特林数+换根dp)
题意 题目链接:https://www.luogu.org/problem/P4827 给定一棵 \(n\) 个节点的树和一个常数 \(k\) ,对于树上的每一个节点 \(i\) ,求出 \( ...
- Acesrc and Travel(2019年杭电多校第八场06+HDU6662+换根dp)
题目链接 传送门 题意 两个绝顶聪明的人在树上玩博弈,规则是轮流选择下一个要到达的点,每达到一个点时,先手和后手分别获得\(a_i,b_i\)(到达这个点时两个人都会获得)的权值,已经经过的点无法再次 ...
- bzoj 3566: [SHOI2014]概率充电器 数学期望+换根dp
题意:给定一颗树,树上每个点通电概率为 $q[i]$%,每条边通电的概率为 $p[i]$%,求期望充入电的点的个数. 期望在任何时候都具有线性性,所以可以分别求每个点通电的概率(这种情况下期望=概率 ...
- codeforces1156D 0-1-Tree 换根dp
题目传送门 题意: 给定一棵n个点的边权为0或1的树,一条合法的路径(x,y)(x≠y)满足,从x走到y,一旦经过边权为1的边,就不能再经过边权为0的边,求有多少边满足条件? 思路: 首先,这道题也可 ...
- [Bzoj3743][Coci2015] Kamp【换根Dp】
Online Judge:Bzoj3743 Label:换根Dp,维护最长/次长链 题目描述 一颗树n个点,n-1条边,经过每条边都要花费一定的时间,任意两个点都是联通的. 有K个人(分布在K个不同的 ...
- 洛谷$P3647\ [APIO2014]$连珠线 换根$dp$
正解:换根$dp$ 解题报告: 传送门! 谁能想到$9102$年了$gql$居然还没写过换根$dp$呢,,,$/kel$ 考虑固定了从哪个点开始之后,以这个点作为根,蓝线只可能是直上直下的,形如&qu ...
随机推荐
- SQL 查询建表SQL
1.新建一个查询语句,按执行按钮 2.结果页面会显示一条sql语句,复制该语句即可建表 3.建表测试
- mui横向滑动菜单
<style> .mui-bar a { color: #E02D26; } #topItem { background: white; border-bottom: 1px solid ...
- STM32 M0之SPI
从M3到M0,可能SPI的接口函数大致类似,但是细节略有不同 仔细观察寄存器描述,虽然个别存在差异,但是真心不知道竟然有太多的“玄机” 这次的问题主要出在了数据宽度上: 1. M3/M4的数据宽度支持 ...
- storm常见问题
一.storm ui 不显示 supervisor 信息 在zk节点上删掉storm信息,重新启动storm集群即可
- [转帖].NET导出Excel的四种方法及评测
.NET导出Excel的四种方法及评测 https://www.cnblogs.com/sdflysha/p/20190824-dotnet-excel-compare.html 导出Excel是.N ...
- Jquery中数组转字符串,c:foreach自动将带","字符串进行拆分赋值
1.数组转字符串,逗号分割 a.push()将元素依次添加至数组: b.join()将数组转换成字符串,里面可以带参数分隔符,默认[,] <script type = text/javascri ...
- SQL语句中的HAVING关键字
sql中的having语句是在使用group by的时候使用的. 通常where语句是在group by之前做数据筛选的,而having语句是对group by之后的结果进行筛选的. 例如: 从商品销 ...
- 超简单的js实现提示效果弹出以及延迟隐藏的功能
自动登录勾选提示效果 要求:鼠标移入显示提示信息框:鼠标离开,信息框消失,消失的效果延迟 <!DOCTYPE html> <html lang="en"> ...
- (转)查找算法:二叉排序树(BSTree)
二叉排序树(Binary Sort Tree),又称为二叉查找树(Binary Search Tree) ,即BSTree. 构造一棵二叉排序树的目的,其实并不是为了排序,而是为了提高查找和插入删除的 ...
- 怎样查看Nginx版本号
方法一: 使用 nginx -v nginx -v 方法二: 使用 nginx -V nginx -V 注意: nginx -V 显示的是: 版本号 / 编译器版本 / 配置参数