换根都不会了

题目大意

给定一棵$n$个点的树和树上一撮关键点,求到所有$m$个关键点距离的最大值$dis_{max}\le LIM$的点的个数。

$n,m\le 30000,LIM\le 30000$


题目分析

考虑在求出一个点的情况下如何转移到其子节点。

对点$u$最直接关心的状态是$mx[u]$:所有关键点到$u$的最大距离。

对点$u$的子节点$v$来说,$u$能带给它的只是“外面的世界”——$v$子树的补集这块贡献,也就是对于$u$的除了$v$子树的$mx[u]$。

因为$mx[u]$的值只会是"从/不从$v$转移"两个状态,那么相当于需要辅助记一个$dx[u]$:所有关键点到$u$的可重次大距离。

这样做两遍dfs就可以实现换根的dp了。

 #include<bits/stdc++.h>
const int maxn = ;
const int maxm = ; int n,m,lim,ans,sum,p[maxn],mx[maxn],dx[maxn];
int edgeTot,head[maxn],nxt[maxm],edges[maxm];
bool tag[maxn]; int read()
{
char ch = getchar();
int num = , fl = ;
for (; !isdigit(ch); ch=getchar())
if (ch=='-') fl = -;
for (; isdigit(ch); ch=getchar())
num = (num<<)+(num<<)+ch-;
return num*fl;
}
void addedge(int u, int v)
{
edges[++edgeTot] = v, nxt[edgeTot] = head[u], head[u] = edgeTot;
edges[++edgeTot] = u, nxt[edgeTot] = head[v], head[v] = edgeTot;
}
void dfs1(int x, int fa)
{
mx[x] = dx[x] = -;
if (tag[x]) mx[x] = ;
for (int i=head[x]; i!=-; i=nxt[i])
{
int v = edges[i];
if (v==fa) continue;
dfs1(v, x);
if (mx[v]!=-&&mx[v]+ >= mx[x]) dx[x] = mx[x], mx[x] = mx[v]+;
else if (mx[v]!=-&&mx[v]+ > dx[x]) dx[x] = mx[v]+;
}
}
void dfs2(int x, int fa)
{
for (int i=head[x]; i!=-; i=nxt[i])
{
int v = edges[i], val = ;
if (v==fa) continue;
if (mx[x]==mx[v]+&&mx[v]!=-) val = dx[x]+;
else val = mx[x]+;
if (val&&val >= mx[v]) dx[v] = mx[v], mx[v] = val;
else if (val&&val > dx[v]) dx[v] = val;
dfs2(v, x);
}
if (mx[x] <= lim) ++ans;
}
int main()
{
memset(head, -, sizeof head);
n = read(), m = read(), lim = read();
for (int i=; i<=m; i++) tag[read()] = true;
for (int i=; i<n; i++) addedge(read(), read());
dfs1(, );
dfs2(, );
printf("%d\n",ans);
return ;
}

END

【换根dp】9.22小偷的更多相关文章

  1. [BZOJ4379][POI2015]Modernizacja autostrady[树的直径+换根dp]

    题意 给定一棵 \(n\) 个节点的树,可以断掉一条边再连接任意两个点,询问新构成的树的直径的最小和最大值. \(n\leq 5\times 10^5\) . 分析 记断掉一条边之后两棵树的直径为 \ ...

  2. 2018.10.15 NOIP训练 水流成河(换根dp)

    传送门 换根dp入门题. 貌似李煜东的书上讲过? 不记得了. 先推出以1为根时的答案. 然后考虑向儿子转移. 我们记f[p]f[p]f[p]表示原树中以ppp为根的子树的答案. g[p]g[p]g[p ...

  3. 换根DP+树的直径【洛谷P3761】 [TJOI2017]城市

    P3761 [TJOI2017]城市 题目描述 从加里敦大学城市规划专业毕业的小明来到了一个地区城市规划局工作.这个地区一共有ri座城市,<-1条高速公路,保证了任意两运城市之间都可以通过高速公 ...

  4. 小奇的仓库:换根dp

    一道很好的换根dp题.考场上现场yy十分愉快 给定树,求每个点的到其它所有点的距离异或上m之后的值,n=100000,m<=16 只能线性复杂度求解,m又小得奇怪.或者带一个log像kx一样打一 ...

  5. 国家集训队 Crash 的文明世界(第二类斯特林数+换根dp)

    题意 ​ 题目链接:https://www.luogu.org/problem/P4827 ​ 给定一棵 \(n\) 个节点的树和一个常数 \(k\) ,对于树上的每一个节点 \(i\) ,求出 \( ...

  6. Acesrc and Travel(2019年杭电多校第八场06+HDU6662+换根dp)

    题目链接 传送门 题意 两个绝顶聪明的人在树上玩博弈,规则是轮流选择下一个要到达的点,每达到一个点时,先手和后手分别获得\(a_i,b_i\)(到达这个点时两个人都会获得)的权值,已经经过的点无法再次 ...

  7. bzoj 3566: [SHOI2014]概率充电器 数学期望+换根dp

    题意:给定一颗树,树上每个点通电概率为 $q[i]$%,每条边通电的概率为 $p[i]$%,求期望充入电的点的个数. 期望在任何时候都具有线性性,所以可以分别求每个点通电的概率(这种情况下期望=概率 ...

  8. codeforces1156D 0-1-Tree 换根dp

    题目传送门 题意: 给定一棵n个点的边权为0或1的树,一条合法的路径(x,y)(x≠y)满足,从x走到y,一旦经过边权为1的边,就不能再经过边权为0的边,求有多少边满足条件? 思路: 首先,这道题也可 ...

  9. [Bzoj3743][Coci2015] Kamp【换根Dp】

    Online Judge:Bzoj3743 Label:换根Dp,维护最长/次长链 题目描述 一颗树n个点,n-1条边,经过每条边都要花费一定的时间,任意两个点都是联通的. 有K个人(分布在K个不同的 ...

  10. 洛谷$P3647\ [APIO2014]$连珠线 换根$dp$

    正解:换根$dp$ 解题报告: 传送门! 谁能想到$9102$年了$gql$居然还没写过换根$dp$呢,,,$/kel$ 考虑固定了从哪个点开始之后,以这个点作为根,蓝线只可能是直上直下的,形如&qu ...

随机推荐

  1. 最新 快乐阳光java校招面经 (含整理过的面试题大全)

    从6月到10月,经过4个月努力和坚持,自己有幸拿到了网易雷火.京东.去哪儿.快乐阳光等10家互联网公司的校招Offer,因为某些自身原因最终选择了快乐阳光.6.7月主要是做系统复习.项目复盘.Leet ...

  2. codevs 3031:最富有的人

    题目描述 Description 在你的面前有n堆金子,你只能取走其中的两堆,且总价值为这两堆金子的xor值,你想成为最富有的人,你就要有所选择. 输入描述 Input Description 第一行 ...

  3. 洛谷 题解 P1196 【[NOI2002]银河英雄传说】

    并查集大难题. 看了题解之后才有思路,调了很久很久才AC,当然要写一篇题解来纪念一下. 先来分析一下这些指令的特点,很容易发现对于每个M指令,只可能一次移动整个队列,并且是把两个队列首尾相接合并成一个 ...

  4. [转帖]密钥库文件格式(Keystore)和证书文件格式(Certificate)

    密钥库文件格式[keystore]代码 https://blog.csdn.net/zzhongcy/article/details/22755317 格式 : JKS 扩展名 : .jks/.ks ...

  5. elasticsearch进行远程访问,所面对的问题解决方案

    elasticsearch6.2进行远程访问,修改yml文件后,启动会报错: 上面四个问题解决方案如下: 问题1,问题2,问题3,解决如下: 注意: 针对第二个问题,你可能在limits.d目录中没有 ...

  6. 数据的特征预处理?(归一化)&(标准化)&(缺失值)

    特征处理是什么: 通过特定的统计方法(数学方法)将数据转化成为算法要求的数据 sklearn特征处理API: sklearn.preprocessing 代码示例:  文末! 归一化: 公式:    ...

  7. XML工具——xmlbeans的使用

    一.安装xmlbeans 1.下载xmlbeans 下载地址:https://gitee.com/shizuru/xmlbeans-2.6.0 2.解压,此处以解压至D盘根目录为例 3.配置环境变量( ...

  8. 怎样指定当前cookie不能通过js脚本获取

    所谓" 不能通过js脚本获取 " 主要指的是: 使用document.cookie / XMLHttpRequest对象 / Request API 等无法获取到当前cookie. ...

  9. 远程连接windows2003桌面无法使用剪切板的有效解决方法

    远程桌面控制服务器时,无法剪切.粘贴一些东西,上网搜了一下,原来是rdpclip.exe(remote desktop clipboard)不起作用了.此程序负责管理本地机与远程服务器之间共享剪切板, ...

  10. CPU vector operations

    CPU vector operations 原文:https://blog.csdn.net/wangeen/article/details/8602028 vector operations 是现代 ...