题目链接:https://vjudge.net/problem/POJ-3714

题意:给定两个点集,求最短距离。

思路:在平面最近点对基础上加了个条件,我么不访用f做标记,集合1的f为1,集合2的f为-1,那么求两个点的距离时,如果a.f*b.f=-1时计算距离,否则乘积为1的话返回inf。其它就和hdoj1007一样了.

AC代码:

#include<cstdio>
#include<algorithm>
#include<cmath>
#include<cstdlib>
using namespace std; const int maxn=2e5+;
const double inf=1e30;
int T,n,cnt,id[maxn];
struct node{
int x,y,f;
}pt[maxn]; bool operator < (const node& a,const node& b){
if(a.x==b.x) return a.y<b.y;
return a.x<b.x;
} bool cmp(int a,int b){
return pt[a].y<pt[b].y;
} double dist(const node& a,const node& b){
if(a.f*b.f==) return inf;
return sqrt(1.0*(a.x-b.x)*(a.x-b.x)+1.0*(a.y-b.y)*(a.y-b.y));
} double fenzhi(int l,int r){
double d=inf;
if(l==r) return d;
if(l+==r) return dist(pt[l],pt[r]);
int mid=(l+r)>>;
d=min(fenzhi(l,mid),fenzhi(mid+,r));
cnt=;
int t1,t2,l1=l,r1=mid,mid1;
while(l1<=r1){
mid1=(l1+r1)>>;
if(pt[mid].x-pt[mid1].x<d) r1=mid1-;
else l1=mid1+;
}
t1=l1;
l1=mid+,r1=r;
while(l1<=r1){
mid1=(l1+r1)>>;
if(pt[mid1].x-pt[mid].x<d) l1=mid1+;
else r1=mid1-;
}
t2=r1;
for(int i=t1;i<=t2;++i)
id[++cnt]=i;
sort(id+,id+cnt+,cmp);
for(int i=;i<cnt;++i)
for(int j=i+;j<=cnt&&(pt[id[j]].y-pt[id[i]].y<d);++j)
d=min(d,dist(pt[id[i]],pt[id[j]]));
return d;
} int main(){
scanf("%d",&T);
while(T--){
scanf("%d",&n);
for(int i=;i<=*n;++i){
scanf("%d%d",&pt[i].x,&pt[i].y);
if(i<=n) pt[i].f=;
else pt[i].f=-;
}
sort(pt+,pt++*n);
printf("%.3f\n",fenzhi(,*n));
}
return ;
}

poj3714 Raid(分治求平面最近点对)的更多相关文章

  1. POJ 3714 分治/求平面最近点对

    第一次见这种问题直接懵圈...没想到分治法这么强大,借鉴了lyd的代码: 代码如下 #include<cstdio> #include<algorithm> #include& ...

  2. POJ3714 Raid 分治/K-D Tree

    VJ传送门 简要题意:给出两个大小均为\(N\)的点集\(A,B\),试在\(A\)中选择一个点,在\(B\)中选择一个点,使得它们在所有可能的选择方案中欧几里得距离最小,求出这个距离 下面给出的两种 ...

  3. (模板)hdoj1007(分治求平面最小点对)

    题目链接:https://vjudge.net/problem/HDU-1007 题意:给定n个点,求平面距离最小点对的距离除2. 思路:分治求最小点对,对区间[l,r]递归求[l,mid]和[mid ...

  4. Vijos 1012 清帝之惑之雍正 平面最近点对(分治)

    背景 雍正帝胤祯,生于康熙十七年(1678)是康熙的第四子.康熙61年,45岁的胤祯继承帝位,在位13年,死于圆明园.庙号世宗. 胤祯是在康乾盛世前期--康熙末年社会出现停滞的形式下登上历史舞台的.复 ...

  5. wannafly 练习赛11 E 求最值(平面最近点对)

    链接:https://www.nowcoder.com/acm/contest/59/E 时间限制:C/C++ 1秒,其他语言2秒 空间限制:C/C++ 32768K,其他语言65536K 64bit ...

  6. HDU1007--Quoit Design(平面最近点对)

    Problem Description Have you ever played quoit in a playground? Quoit is a game in which flat rings ...

  7. hdu 1007 Quoit Design(平面最近点对)

    题意:求平面最近点对之间的距离 解:首先可以想到枚举的方法,枚举i,枚举j算点i和点j之间的距离,时间复杂度O(n2). 如果采用分治的思想,如果我们知道左半边点对答案d1,和右半边点的答案d2,如何 ...

  8. HDU-4631 Sad Love Story 平面最近点对

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4631 数据是随机的,没有极端数据,所以可以分段考虑,最小值是一个单调不增的函数,然后每次分治算平面最近 ...

  9. $Poj3714/AcWing\ Raid$ 分治/平面最近点对

    $AcWing$ $Sol$ 平面最近点对板子题,注意要求的是两种不同的点之间的距离. $Code$ #include<bits/stdc++.h> #define il inline # ...

随机推荐

  1. (五)CWnd 所有窗口类的父类,CFrameWnd,Afx_xxx 全局函数,命名规范

    CWnd::MessageBox: 只有CWnd的派生类才可以使用MessageBox 所以应用程序类中使用:AfxMessageBox // 初始化 OLE 库 if (!AfxOleInit()) ...

  2. use potato

  3. js监听页面标签切换

    var OriginTitile = document.title, titleTime; document.addEventListener('visibilitychange', function ...

  4. 2 - Rich feature hierarchies for accurate object detection and semantic segmentation(阅读翻译)

    Rich feature hierarchies for accurate object detection and semantic segmentation Ross Girshick Jeff ...

  5. ps 证件照制作

    自己制作证件照,再通过印鸽等服务打印邮寄,个人感觉还是比较方便实惠. 使用ps的定义图案和填充功能(ps精简版) 定义图案 1,打开1寸照片 2,图像=>图像大小,可选去掉约束比例 1寸:2.5 ...

  6. ElasticSearch1:基本概念

    ElasticSearch的基本概念 es基本概念: Elasticsearch是面向文档型数据库,一条数据在这里就是一个文档,用JSON作为文档序列化的格式 NRT:Nearly Real Time ...

  7. antd源码分析之——标签页(tabs 3.Tabs的滚动效果)

    由于ant Tabs组件结构较复杂,共分三部分叙述,本文为目录中第三部分(高亮) 目录 一.组件结构 antd代码结构 rc-ant代码结构 1.组件树状结构 2.Context使用说明 3.rc-t ...

  8. curl 使用笔记

    一.使用案例 curl -H "cookie:userName=shangyy" www.baidu.com 二.使用 1.从Netscape的网页服务器上获得该网站的主页: cu ...

  9. SpringBoot几种定时任务的实现方式 和多线程执行任务

    定时任务实现的几种方式: Timer:这是java自带的java.util.Timer类,这个类允许你调度一个java.util.TimerTask任务.使用这种方式可以让你的程序按照某一个频度执行, ...

  10. 链接Linux工具(SecureCRT)

    SecureCRT下载 点我下载 http://download.csdn.net/download/weixin_39549656/10207279 安装 先运行注册机 链接 输入密码 出现以下界面 ...