AtCoder Beginner Contest 132
Contest Info
[Practice Link](https://atcoder.jp/contests/abc132/tasks)
Solved | A | B | C | D | E | F |
---|---|---|---|---|---|---|
6/6 | O | O | O | O | Ø | O |
- O 在比赛中通过
- Ø 赛后通过
- ! 尝试了但是失败了
- - 没有尝试
Solutions
A. Fifty-Fifty
#include <bits/stdc++.h>
using namespace std;
int main() {
string s; cin >> s;
sort(s.begin(), s.end());
s.erase(unique(s.begin(), s.end()), s.end());
cout << (((int)s.size() == 2) ? "Yes" : "No") << "\n";
return 0;
}
B. Ordinary Number
#include <bits/stdc++.h>
using namespace std;
#define N 50
int n, a[N];
int main() {
while (scanf("%d", &n) != EOF) {
for (int i = 1; i <= n; ++i) {
scanf("%d", a + i);
}
int res = 0;
for (int i = 2; i < n; ++i) {
int f = a[i] < a[i - 1];
int g = a[i] < a[i + 1];
if (f ^ g) {
++res;
}
}
printf("%d\n", res);
}
return 0;
}
C. Divide the Problems
#include <bits/stdc++.h>
using namespace std;
#define N 100010
int n, a[N];
int main() {
while (scanf("%d", &n) != EOF) {
for (int i = 1; i <= n; ++i) {
scanf("%d", a + i);
}
sort(a + 1, a + 1 + n);
int mid = n / 2;
if (a[mid] == a[mid + 1]) {
puts("0");
} else {
printf("%d\n", a[mid + 1] - a[mid]);
}
}
return 0;
}
D. Blue and Red Balls
题意:
有\(K\)个蓝球,\(N - K\)个红球,询问将蓝球分成\(i(1 \leq i \leq k)\)堆,中间用红球隔开的方案数分别是多少?
思路:
考虑先将\(k\)个蓝球分成\(i\)堆,然后每堆后面跟着一个红球,然后就有\(i + 1\)个空隙,剩下的红球相当于要放入\(i + 1\)个空箱中,允许空箱的经典问题。
#include <bits/stdc++.h>
using namespace std;
#define ll long long
#define N 2010
const int p = 1e9 + 7;
int n, k;
ll fac[N], inv[N];
ll qmod(ll base, ll n) {
ll res = 1;
while (n) {
if (n & 1) {
res = res * base % p;
}
base = base * base % p;
n >>= 1;
}
return res;
}
ll C(int n, int m) {
if (n < m) return 0;
return fac[n] * inv[m] % p * inv[n - m] % p;
}
ll f(int n, int i, int k) {
ll remind = n - k;
if (n - k < i - 1) {
return 0;
}
remind -= i - 1;
return C(k - 1, i - 1) * C(i + remind, i) % p;
}
int main() {
fac[0] = 1;
for (int i = 1; i <= 2000; ++i) {
fac[i] = fac[i - 1] * i % p;
}
inv[2000] = qmod(fac[2000], p - 2);
for (int i = 2000; i >= 0; --i) {
inv[i - 1] = inv[i] * i % p;
}
while (scanf("%d%d", &n, &k) != EOF) {
for (int i = 1; i <= k; ++i) {
printf("%lld\n", f(n, i, k));
}
}
return 0;
}
E. Hopscotch Addict
题意:
求\(S\)到\(T\)的最短路,并且要满足其长度是\(3\)的倍数。
思路:
\(dis[i][j]\)表示到第\(i\)个点,长度模\(3\)的值为\(j\)的最短路是多少,然后跑Dijkstra即可。
#include <bits/stdc++.h>
using namespace std;
#define INF 0x3f3f3f3f
#define N 100010
int n, m, s, t;
vector <vector<int>> G;
struct node {
int u, w;
node() {}
node (int u, int w) : u(u), w(w) {}
bool operator < (const node &other) const {
return w > other.w;
}
};
int dis[N][3], used[N][3];
void BFS() {
for (int i = 1; i <= n; ++i) {
for (int j = 0; j < 3; ++j) {
dis[i][j] = INF;
used[i][j] = 0;
}
}
dis[s][0] = 0;
priority_queue <node> pq;
pq.push(node(s, 0));
while (!pq.empty()) {
int u = pq.top().u, w = pq.top().w; pq.pop();
if (used[u][w % 3]) continue;
used[u][w % 3] = 1;
for (auto v : G[u]) {
if (dis[v][(w + 1) % 3] > w + 1) {
dis[v][(w + 1) % 3] = w + 1;
pq.push(node(v, w + 1));
}
}
}
}
int main() {
while (scanf("%d%d", &n, &m) != EOF) {
G.clear(); G.resize(n + 1);
for (int i = 1, u, v; i <= m; ++i) {
scanf("%d%d", &u, &v);
G[u].push_back(v);
}
scanf("%d%d", &s, &t);
BFS();
if (dis[t][0] == INF) puts("-1");
else {
printf("%d\n", dis[t][0] / 3);
}
}
return 0;
}
F. Small Products
题意:
构造一个长度为\(k\)的,并且相邻两数之积不超过\(N\)的序列的方案数是多少?
思路:
\(f[i][j]\)表示到第\(i\)位,当前位为\(j\)的方案数是多少。
暴力\(DP\)显然不行。
但是我们考虑我们每次对于\(j\)转移的都是\(\sum\limits_{j = 1}^{N / j} f[i - 1][j]\),考虑到\(N / j\)的取值只有\(2\sqrt{N}\)种,所以只需要存\(k \cdot 2\sqrt{N}\)种状态。转移即可。
#include <bits/stdc++.h>
using namespace std;
#define ll long long
#define N 110
#define M 100010
#define pii pair <int, int>
#define fi first
#define se second
const ll p = 1e9 + 7;
int n, k;
ll f[N][M];
pii g[M];
map <int, int> mp;
int main() {
while (scanf("%d%d", &k, &n) != EOF) {
memset(f, 0, sizeof f);
mp.clear();
int m = 0;
for (int i = 1, j; i <= k; i = j + 1) {
j = k / (k / i);
g[++m] = pii(j, j - i + 1);
mp[j] = m;
}
for (int i = 1; i <= m; ++i) {
f[1][i] = (f[1][i - 1] + g[i].se) % p;
}
for (int i = 2; i <= n; ++i) {
for (int j = 1; j <= m; ++j) {
f[i][j] = (f[i][j - 1] + 1ll * g[j].se * f[i - 1][mp[k / g[j].fi]] % p) % p;
}
}
printf("%lld\n", f[n][m]);
}
return 0;
}
AtCoder Beginner Contest 132的更多相关文章
- AtCoder Beginner Contest 132 解题报告
前四题都好水.后面两道题好难. C Divide the Problems #include <cstdio> #include <algorithm> using names ...
- AtCoder Beginner Contest 132 F Small Products
Small Products 思路: 整除分块+dp 打表发现,按整除分块后转移方向如下图所示,上面的块的前缀转移到下面的块 代码: #pragma GCC optimize(2) #pragma G ...
- AtCoder Beginner Contest 132 E - Hopscotch Addict
bfs 位置+状态 just need to calculate min value(only it is useful), so O(1*x) 挺有趣的一道题... #include <cst ...
- AtCoder Beginner Contest 100 2018/06/16
A - Happy Birthday! Time limit : 2sec / Memory limit : 1000MB Score: 100 points Problem Statement E8 ...
- AtCoder Beginner Contest 052
没看到Beginner,然后就做啊做,发现A,B太简单了...然后想想做完算了..没想到C卡了一下,然后还是做出来了.D的话瞎想了一下,然后感觉也没问题.假装all kill.2333 AtCoder ...
- AtCoder Beginner Contest 053 ABCD题
A - ABC/ARC Time limit : 2sec / Memory limit : 256MB Score : 100 points Problem Statement Smeke has ...
- AtCoder Beginner Contest 136
AtCoder Beginner Contest 136 题目链接 A - +-x 直接取\(max\)即可. Code #include <bits/stdc++.h> using na ...
- AtCoder Beginner Contest 137 F
AtCoder Beginner Contest 137 F 数论鬼题(虽然不算特别数论) 希望你在浏览这篇题解前已经知道了费马小定理 利用用费马小定理构造函数\(g(x)=(x-i)^{P-1}\) ...
- AtCoder Beginner Contest 076
A - Rating Goal Time limit : 2sec / Memory limit : 256MB Score : 100 points Problem Statement Takaha ...
随机推荐
- 联想U310 安装系统后无法识别机械硬盘处理
过程: 原30G的固态更换成250G的 mSATA固态,去掉机械硬盘,开始在固态里安装系统, 系统用PE登录,安装正版Win7 64B 专业版, 安装结束,接上机械硬盘, *PE下,可以正常识别2块硬 ...
- (十一)springmvc和spring的整合
1:Maven引入相关的jar包. <project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="ht ...
- Java RadixSort
Java RadixSort /** * <html> * <body> * <P> Copyright 1994-2018 JasonInternational ...
- OutOfRangeError的解决办法
自制TFRecord数据集,训练神经网络出现的一个问题,及解决办法. 错误现象: 数据训练完成后,测试数据集正确率时,运行mnist_test.py文件,出现错误代码 问题分析:显示需测试数据10 ...
- ipp 实现图像空间的转换
下载:https://software.intel.com/en-us/parallel-studio-xe/choose-download/free-trial-cluster-windows-c- ...
- 2、JDK8中的HashMap实现原理及源码分析
本篇提纲.png 本篇所述源码基于JDK1.8.0_121 在写上一篇线性表的文章的时候,笔者看的是Android源码中support24中的Java代码,当时发现这个ArrayList和Linked ...
- flask的配置项及获取
1 修改/新增配置项的3种方法 # 配置参数的使用方式 # 1. 使用配置文件 # app.config.from_pyfile("config.cfg") # 2. 使用对象配置 ...
- MySQL的数据读取过程
本文来自:http://blog.chinaunix.net/uid-20785090-id-4759476.html 对于build-in的innodb的架构,每次当发布IO请求时,究竟是mysql ...
- IBM XIV
参考:https://www.doit.com.cn/p/author/xigua 参考:http://www.doit.com.cn/p/196056.html 图片说明: IBM XIV存储系统采 ...
- Python爬微信好友头像,性别,所在地区
本文适合新手(有一定基础的小白) 今天没事,用的网页版微信,于是看源码心理作怪,F12打开,研究了一下,结果发现 /斜眼笑/斜眼笑/斜眼笑 再加上,没事干,(大家有好工作求介绍,本人待就业),Pyth ...