题目描述

为了在即将到来的晚会上有更好的演出效果,作为AAA合唱队负责人的小A需要将合唱队的人根据他们的身高排出一个队形。假定合唱队一共N个人,第i个人的身高为Hi米(1000<=Hi<=2000),并已知任何两个人的身高都不同。假定最终排出的队形是A 个人站成一排,为了简化问题,小A想出了如下排队的方式:他让所有的人先按任意顺序站成一个初始队形,然后从左到右按以下原则依次将每个人插入最终棑排出的队形中:

-第一个人直接插入空的当前队形中。

-对从第二个人开始的每个人,如果他比前面那个人高(H较大),那么将他插入当前队形的最右边。如果他比前面那个人矮(H较小),那么将他插入当前队形的最左边。

当N个人全部插入当前队形后便获得最终排出的队形。

例如,有6个人站成一个初始队形,身高依次为1850、1900、1700、1650、1800和1750,

那么小A会按以下步骤获得最终排出的队形:

1850

  • 1850 , 1900 因为 1900 > 1850
  • 1700, 1850, 1900 因为 1700 < 1900
  • 1650 . 1700, 1850, 1900 因为 1650 < 1700
  • 1650 , 1700, 1850, 1900, 1800 因为 1800 > 1650
  • 1750, 1650, 1700,1850, 1900, 1800 因为 1750 < 1800

因此,最终排出的队形是 1750,1650,1700,1850, 1900,1800

小A心中有一个理想队形,他想知道多少种初始队形可以获得理想的队形

说明/提示

30%的数据:n<=100

100%的数据:n<=1000

解析

其实这道题是递推/记搜。

观察题目,容易归纳出每次取一个人加入队形时,他只可能加在队列的最左边或者最右边,满足区间dp的性质。

设\(dp[0/1][i][j]\)表示在区间\(i\sim j\)中最后放的人在最左/右时的方案数。

根据加法原理,容易写出状态转移方程:

\[dp[i][j][0] = dp[i + 1][j][0] · [h_i < h_{i+1}] + dp[i + 1][j][1] · [h_i < h_j
]\\
dp[i][j][1] = dp[i][j − 1][0] · [h_j > h_i
] + dp[i][j - 1][1] · [h_j > h_{j−1}]
\]

自认为这题比较神奇的一点(我WA了好几次),是初始化,鬼知道为什么只用初始化一维(\(0/1\)那一维),而且无论你初始化哪一维答案都是一样的。

参考代码

#include<cstdio>
#include<iostream>
#include<cmath>
#include<cstring>
#include<ctime>
#include<cstdlib>
#include<algorithm>
#include<queue>
#include<set>
#include<map>
#define mod 19650827
#define N 1010
using namespace std;
int dp[2][N][N],n,a[N];
int main()
{
scanf("%d",&n);
for(int i=1;i<=n;++i) scanf("%d",&a[i]),dp[0][i][i]=1;
for(int len=2;len<=n;++len)
for(int l=1;l<=n-len+1;++l){
int r=l+len-1;
// 0 left 1 right
int t1=0,t2=0,t3=0,t4=0;
if(a[l]<a[l+1]) t1=1;
if(a[l]<a[r]) t2=1;
if(a[r]>a[r-1]) t3=1;
if(a[r]>a[l]) t4=1;
dp[0][l][r]=(dp[0][l+1][r]*t1%mod+dp[1][l+1][r]*t2%mod)%mod;
dp[1][l][r]=(dp[1][l][r-1]*t3%mod+dp[0][l][r-1]*t4%mod)%mod;
}
printf("%d\n",((dp[0][1][n]%mod+dp[1][1][n])%mod)%mod);
return 0;
}

P3205 [HNOI2010]合唱队[区间dp]的更多相关文章

  1. [HNOI2010]合唱队 区间DP

    ---题面--- 题解: 偶然翻到这道题,,,就写了. 观察到一个数被插在哪里只受前一个数的影响,如果明确了前一个数是哪个,那么我们就可以确定大小关系,就可以知道当前这个数插在哪里,而上一个插入的数就 ...

  2. 洛谷 P3205 [HNOI2010]合唱队 解题报告

    P3205 [HNOI2010]合唱队 题目描述 为了在即将到来的晚会上有更好的演出效果,作为AAA合唱队负责人的小A需要将合唱队的人根据他们的身高排出一个队形.假定合唱队一共N个人,第i个人的身高为 ...

  3. 洛谷——P3205 [HNOI2010]合唱队

    P3205 [HNOI2010]合唱队 题目描述 为了在即将到来的晚会上有更好的演出效果,作为AAA合唱队负责人的小A需要将合唱队的人根据他们的身高排出一个队形.假定合唱队一共N个人,第i个人的身高为 ...

  4. 【BZOJ1996】【HNOI2010】合唱队 [区间DP]

    合唱队 Time Limit: 4 Sec  Memory Limit: 64 MB[Submit][Status][Discuss] Description Input Output Sample ...

  5. BZOJ1996:[HNOI2010]CHORUS 合唱队(区间DP)

    Description Input Output Sample Input 4 1701 1702 1703 1704 Sample Output 8 HINT Solution 辣鸡guide真难用 ...

  6. [HNOI2010]CHORUS 合唱队 (区间DP)

    题目描述 对于一个包含 NN 个整数的数列 AA ,我们可以把它的所有元素加入一个双头队列 BB . 首先 A1A1 作为队列的唯一元素,然后依次加入 A2∼ANA2∼AN ,如果 Ai<Ai− ...

  7. LG3205/BZOJ1996 「HNOI2010」合唱队 区间DP

    区间DP 区间DP: 显然是一个区间向左右拓展形成的下一个区间,具有包含关系,所以可以使用区间DP. 状态设计: 考虑和关路灯一样设计状态 因为不知道当前这个区间是从哪个区间拓展而来,即不知道这个区间 ...

  8. [洛谷P3205] HNOI2010 合唱队

    问题描述 为了在即将到来的晚会上有更好的演出效果,作为AAA合唱队负责人的小A需要将合唱队的人根据他们的身高排出一个队形.假定合唱队一共N个人,第i个人的身高为Hi米(1000<=Hi<= ...

  9. 洛谷 P3205 [HNOI2010]合唱队

    题目链接 题解 区间dp \(f[i][j]\)表示i~j区间最后一次插入的是\(a[i]\) \(g[i][j]\)表示i~j区间最后一次插入的是\(a[j]\) 然后就是普通区间dp转移 Code ...

随机推荐

  1. golang实现无限级菜单(beego框架下)

    原文地址  http://www.niu12.com/article/37 golang实现无限级菜单(beego框架下) 数据表如下 -- ---------------------------- ...

  2. [OpenCV开发]OpenCV图像编码和解码 imencode和imdecode使用,用于网络传输图片

    在很多应用中,经常会直接把图片的二进制数据进行交换,比如说利用 socket 通信传送图片二进制数据,或者直接用内存数据库(例如 Redis)来传递图片二进制数据. 这个时候,当你的应用程序读到内存里 ...

  3. 高性能最终一致性框架Ray之基本功能篇

    一.Event(事件) Event是Actor产生的记录状态变化的日志,由StateId(状态Id),UID(幂等性控制),TypeCode(事件类型),Data(事件数据),Version(事件版本 ...

  4. JAVA操作word方法

    jacob,功能非常强大,能操作word,excel和pdf.下载地址是:http://sourceforge.net/projects/jacob-project/ 1.新建一个文档  Dispat ...

  5. .net core中关于System.Text.Json的使用

    在.Net Framework的时候序列化经常使用Newtonsoft.Json插件来使用,而在.Net Core中自带了System.Text.Json,号称性能更好,今天抽空就来捣鼓一下. 使用起 ...

  6. (模板)AC自动机模板

    模板1. 给出模式串和文本串,文本串长度小于1e6,模式串长度之和小于1e6,求文本串中有多少模式串出现. 题目链接:https://www.luogu.org/problem/P3808 AC co ...

  7. 028 Android 旋转动画+病毒查杀效果+自定义样式的ProgressBar

    1.目标效果 旋转动画+病毒查杀效果 2.xml布局文件 (1)activity_kill_virus.xml <?xml version="1.0" encoding=&q ...

  8. Tp5.1 管理后台开发纪要

    1. tp5.1 对网页是有缓存机制的 E:\phpStudy\PHPTutorial\WWW\NewAdmin\thinkphp\library\think\Template.php 下displa ...

  9. str.format() 格式化数字的多种方法

    Python2.6 开始,新增了一种格式化字符串的函数 str.format(),它增强了字符串格式化的功能. 基本语法是通过 {} 和 : 来代替以前的 % . format 函数可以接受不限个参数 ...

  10. golang使用一个二叉树来实现一个插入排序

    思路不太好理解,请用断点 package main import "fmt" type tree struct { value int left, right *tree } fu ...