【规律】Farey Sums
【参考博客】:
https://blog.csdn.net/meopass/article/details/82952087
Farey Sums
题目描述
For example, the Farey Sequence of order 6 is:
If the denominators of the Farey Sequence of order N are:
then the Farey Sum of order N is the sum of b[i]/b[i + 1] from i = 1 to K—1.
For example, the Farey Sum of order 6 is:
Write a program to compute the Farey Sum of order N (input).
输入
Each data set consists of a single line of input. It contains the data set number, K, followed by the order N, (2 ≤ N ≤ 10000), of the Farey Sum that is to be computed.
输出
样例输入
4
1 6
2 15
3 57
4 9999
样例输出
1 35/2
2 215/2
3 2999/2
4 91180457/2
参考博客:
别人博客的推导公式:
我倒是觉得,这个题目就是找规律。因为看到答案都是分母为2,很容易想到其实这个题目就是找规律有关的。
联系互素就想到欧拉函数。写出前几个出来发现就是 ( 3phi(x) - 1 ) / 2
#pragma GCC optimize("Ofast,no-stack-protector")
#pragma GCC optimize("O3")
#pragma GCC optimize(2)
#include <bits/stdc++.h>
#define inf 0x3f3f3f3f
#define linf 0x3f3f3f3f3f3f3f3fll
#define pi acos(-1.0)
#define nl "\n"
#define pii pair<ll,ll>
#define ms(a,b) memset(a,b,sizeof(a))
#define FAST_IO ios::sync_with_stdio(NULL);cin.tie(NULL);cout.tie(NULL)
using namespace std;
typedef long long ll;
const int mod = ;
ll qpow(ll x, ll y){ll s=;while(y){if(y&)s=s*x%mod;x=x*x%mod;y>>=;}return s;}
//ll qpow(ll a, ll b){ll s=1;while(b>0){if(b%2==1)s=s*a;a=a*a;b=b>>1;}return s;}
inline int read(){int x=,f=;char ch=getchar();while(ch<''||ch>''){if(ch=='-')f=-;ch=getchar();}while(ch>=''&&ch<='') x=x*+ch-'',ch=getchar();return x*f;} const int N = 1e4+; ll pki[N]; void get_pki()
{
for(int i=;i<N;i++) pki[i] = i;
for(int i=;i<N;i++){
if(pki[i]==i)for(int j=i;j<N;j+=i)
pki[j]=pki[j]/i*(i-);
pki[i] += pki[i-];
}
} int main()
{
get_pki();
int _, cas, n;
for(scanf("%d",&_);_--;)
{
scanf("%d",&cas);
scanf("%d",&n);
printf("%d %lld/2\n",cas,*pki[n]-); } }
【规律】Farey Sums的更多相关文章
- 【poj 2478】Farey Sequence(数论--欧拉函数 找规律求前缀和)
题意:定义 Fn 序列表示一串 <1 的分数,分数为最简分数,且分母 ≤n .问该序列的个数.(2≤N≤10^6) 解法:先暴力找规律(代码见屏蔽处),发现 Fn 序列的个数就是 Φ(1)~Φ( ...
- URAL 2065 Different Sums (找规律)
题意:构造一个数列,使得它们的区间和的种类最少,其中数列中不同的数的数目不少于k. 析:我们考虑0这个特殊的数字,然后0越多,那么总和种类最少,再就是正负交替,那么增加0的数量. 代码如下: #pra ...
- 【找规律】URAL - 2065 - Different Sums
就让0出现得尽可能多嘛……大概感受一下就是这样…… 0 0 ... 0 0 0 0 4 -4 3 -3 2 -2 1 -1 #include<cstdio> using namespace ...
- 51nod1161 Partial Sums
开始想的是O(n2logk)的算法但是显然会tle.看了解题报告然后就打表找起规律来.嘛是组合数嘛.时间复杂度是O(nlogn+n2)的 #include<cstdio> #include ...
- Backward Digit Sums(暴力)
Backward Digit Sums Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 5664 Accepted: 32 ...
- 1712: [Usaco2007 China]Summing Sums 加密
1712: [Usaco2007 China]Summing Sums 加密 Time Limit: 5 Sec Memory Limit: 64 MBSubmit: 338 Solved: 12 ...
- Codeforces 1091D New Year and the Permutation Concatenation 找规律,数学 B
Codeforces 1091D New Year and the Permutation Concatenation https://codeforces.com/contest/1091/prob ...
- 【计数】cf223C. Partial Sums
考试时候遇到这种题只会找规律 You've got an array a, consisting of n integers. The array elements are indexed from ...
- Farey sequences
n阶的法里数列是0和1之间最简分数的数列,由小至大排列,每个分数的分母不大于n. Stern-Brocot树(SB Tree)可以生成这个序列 {0/1,1/1} {0/1,1/2,1/1} {0/1 ...
随机推荐
- select选中
比如<select class="selector"></select> 1.设置value为“全部“的项选中 复制代码代码如下: $(&quo ...
- Hibernate 基本使用
Hibernate框架概述 一.什么是框架 软件的一个半成品,已经帮你完成了部分功能. 把一些不确定的东西,按照框架要求,达到相应的功能 Hibernate是JavaEE技术三层架构所用到的技术 二. ...
- C++ STL介绍——String类
目录 1.简介 2.string类成员函数汇总 3.String类的构造函数以及析构函数 4.获取字符串长度 5.获取字符串元素 6.字符串比较方法 7.字符串输入输出 8.字符串查找函数 1.简介 ...
- Cesium入门-2-增加地形
<!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8&quo ...
- python -- 安装+pip+requests
python3 安装库 sudo python3 -m pip install beautifulsoup4 步骤1:安装pyenv 为了能顺利的将系统的python和下载的python版本呼唤, ...
- hwclock和date源码分析
一. hwclock 1.1 hwclock源码在哪里? util-linux 或者busybox 1.2 获取源码 git clone https://github.com/karelzak/uti ...
- Redis Sentinel 高可用服务架构搭建
https://www.cnblogs.com/xishuai/p/redis-sentinel.html
- starUML建模C++【逆向工程】
1.下载starUML 2.打开starUML,选择default approach 3.添加 Profile,把C++添加进去 4.在右侧的工程上点右键—[C++]—-[Reverse Engine ...
- Python2和Python3的字符串编码和类型
一.字符串编码和类型 任何编码格式的字符串,都可以和Unicode互相转换. gbk -> utf8 # 将字符串按指定格式进行解码,返回Unicode字符串unicode_str = gbk_ ...
- ABAP Memory ID
转自:https://blog.csdn.net/lyq123333321/article/details/52659114 (一) Difference Between SAP a ...