Prometheus Operator 自动发现和持久化

之前在 Prometheus Operator 下面自定义一个监控选项,以及自定义报警规则的使用。那么我们还能够直接使用前面课程中的自动发现功能吗?如果在我们的 Kubernetes 集群中有了很多的 Service/Pod,那么我们都需要一个一个的去建立一个对应的 ServiceMonitor 对象来进行监控吗?这样岂不是又变得麻烦起来了?

自动发现配置

为解决上面的问题,Prometheus Operator 为我们提供了一个额外的抓取配置的来解决这个问题,我们可以通过添加额外的配置来进行服务发现进行自动监控。和前面自定义的方式一样,我们想要在 Prometheus Operator 当中去自动发现并监控具有prometheus.io/scrape=true这个 annotations 的 Service,之前我们定义的 Prometheus 的配置如下:

- job_name: 'kubernetes-service-endpoints'
kubernetes_sd_configs:
- role: endpoints
relabel_configs:
- source_labels: [__meta_kubernetes_service_annotation_prometheus_io_scrape]
action: keep
regex: true
- source_labels: [__meta_kubernetes_service_annotation_prometheus_io_scheme]
action: replace
target_label: __scheme__
regex: (https?)
- source_labels: [__meta_kubernetes_service_annotation_prometheus_io_path]
action: replace
target_label: __metrics_path__
regex: (.+)
- source_labels: [__address__, __meta_kubernetes_service_annotation_prometheus_io_port]
action: replace
target_label: __address__
regex: ([^:]+)(?::\d+)?;(\d+)
replacement: $1:$2
- action: labelmap
regex: __meta_kubernetes_service_label_(.+)
- source_labels: [__meta_kubernetes_namespace]
action: replace
target_label: kubernetes_namespace
- source_labels: [__meta_kubernetes_service_name]
action: replace
target_label: kubernetes_name

如果你对上面这个配置还不是很熟悉的话,建议去查看下前面关于 Kubernetes常用资源对象监控章节的介绍,要想自动发现集群中的 Service,就需要我们在 Service 的annotation区域添加prometheus.io/scrape=true的声明,将上面文件直接保存为 prometheus-additional.yaml,然后通过这个文件创建一个对应的 Secret 对象:

$ kubectl create secret generic additional-configs --from-file=prometheus-additional.yaml -n monitoring
secret "additional-configs" created

注意我们所有的操作都在 Prometheus Operator 源码contrib/kube-prometheus/manifests/目录下面。

创建完成后,会将上面配置信息进行 base64 编码后作为 prometheus-additional.yaml 这个 key 对应的值存在:

$ kubectl get secret additional-configs -n monitoring -o yaml
apiVersion: v1
data:
prometheus-additional.yaml: LSBqb2JfbmFtZTogJ2t1YmVybmV0ZXMtc2VydmljZS1lbmRwb2ludHMnCiAga3ViZXJuZXRlc19zZF9jb25maWdzOgogIC0gcm9sZTogZW5kcG9pbnRzCiAgcmVsYWJlbF9jb25maWdzOgogIC0gc291cmNlX2xhYmVsczogW19fbWV0YV9rdWJlcm5ldGVzX3NlcnZpY2VfYW5ub3RhdGlvbl9wcm9tZXRoZXVzX2lvX3NjcmFwZV0KICAgIGFjdGlvbjoga2VlcAogICAgcmVnZXg6IHRydWUKICAtIHNvdXJjZV9sYWJlbHM6IFtfX21ldGFfa3ViZXJuZXRlc19zZXJ2aWNlX2Fubm90YXRpb25fcHJvbWV0aGV1c19pb19zY2hlbWVdCiAgICBhY3Rpb246IHJlcGxhY2UKICAgIHRhcmdldF9sYWJlbDogX19zY2hlbWVfXwogICAgcmVnZXg6IChodHRwcz8pCiAgLSBzb3VyY2VfbGFiZWxzOiBbX19tZXRhX2t1YmVybmV0ZXNfc2VydmljZV9hbm5vdGF0aW9uX3Byb21ldGhldXNfaW9fcGF0aF0KICAgIGFjdGlvbjogcmVwbGFjZQogICAgdGFyZ2V0X2xhYmVsOiBfX21ldHJpY3NfcGF0aF9fCiAgICByZWdleDogKC4rKQogIC0gc291cmNlX2xhYmVsczogW19fYWRkcmVzc19fLCBfX21ldGFfa3ViZXJuZXRlc19zZXJ2aWNlX2Fubm90YXRpb25fcHJvbWV0aGV1c19pb19wb3J0XQogICAgYWN0aW9uOiByZXBsYWNlCiAgICB0YXJnZXRfbGFiZWw6IF9fYWRkcmVzc19fCiAgICByZWdleDogKFteOl0rKSg/OjpcZCspPzsoXGQrKQogICAgcmVwbGFjZW1lbnQ6ICQxOiQyCiAgLSBhY3Rpb246IGxhYmVsbWFwCiAgICByZWdleDogX19tZXRhX2t1YmVybmV0ZXNfc2VydmljZV9sYWJlbF8oLispCiAgLSBzb3VyY2VfbGFiZWxzOiBbX19tZXRhX2t1YmVybmV0ZXNfbmFtZXNwYWNlXQogICAgYWN0aW9uOiByZXBsYWNlCiAgICB0YXJnZXRfbGFiZWw6IGt1YmVybmV0ZXNfbmFtZXNwYWNlCiAgLSBzb3VyY2VfbGFiZWxzOiBbX19tZXRhX2t1YmVybmV0ZXNfc2VydmljZV9uYW1lXQogICAgYWN0aW9uOiByZXBsYWNlCiAgICB0YXJnZXRfbGFiZWw6IGt1YmVybmV0ZXNfbmFtZQo=
kind: Secret
metadata:
creationTimestamp: 2018-12-20T14:50:35Z
name: additional-configs
namespace: monitoring
resourceVersion: "41814998"
selfLink: /api/v1/namespaces/monitoring/secrets/additional-configs
uid: 9bbe22c5-0466-11e9-a777-525400db4df7
type: Opaque

然后我们只需要在声明 prometheus 的资源对象文件中添加上这个额外的配置:(prometheus-prometheus.yaml)

apiVersion: monitoring.coreos.com/v1
kind: Prometheus
metadata:
labels:
prometheus: k8s
name: k8s
namespace: monitoring
spec:
alerting:
alertmanagers:
- name: alertmanager-main
namespace: monitoring
port: web
baseImage: quay.io/prometheus/prometheus
nodeSelector:
beta.kubernetes.io/os: linux
replicas: 2
secrets:
- etcd-certs
resources:
requests:
memory: 400Mi
ruleSelector:
matchLabels:
prometheus: k8s
role: alert-rules
securityContext:
fsGroup: 2000
runAsNonRoot: true
runAsUser: 1000
additionalScrapeConfigs:
name: additional-configs
key: prometheus-additional.yaml
serviceAccountName: prometheus-k8s
serviceMonitorNamespaceSelector: {}
serviceMonitorSelector: {}
version: v2.5.0

添加完成后,直接更新 prometheus 这个 CRD 资源对象:

$ kubectl apply -f prometheus-prometheus.yaml
prometheus.monitoring.coreos.com "k8s" configured

隔一小会儿,可以前往 Prometheus 的 Dashboard 中查看配置是否生效:

config

在 Prometheus Dashboard 的配置页面下面我们可以看到已经有了对应的的配置信息了,但是我们切换到 targets 页面下面却并没有发现对应的监控任务,查看 Prometheus 的 Pod 日志:

$ kubectl logs -f prometheus-k8s-0 prometheus -n monitoring
level=error ts=2018-12-20T15:14:06.772903214Z caller=main.go:240 component=k8s_client_runtime err="github.com/prometheus/prometheus/discovery/kubernetes/kubernetes.go:302: Failed to list *v1.Pod: pods is forbidden: User \"system:serviceaccount:monitoring:prometheus-k8s\" cannot list pods at the cluster scope"
level=error ts=2018-12-20T15:14:06.773096875Z caller=main.go:240 component=k8s_client_runtime err="github.com/prometheus/prometheus/discovery/kubernetes/kubernetes.go:301: Failed to list *v1.Service: services is forbidden: User \"system:serviceaccount:monitoring:prometheus-k8s\" cannot list services at the cluster scope"
level=error ts=2018-12-20T15:14:06.773212629Z caller=main.go:240 component=k8s_client_runtime err="github.com/prometheus/prometheus/discovery/kubernetes/kubernetes.go:300: Failed to list *v1.Endpoints: endpoints is forbidden: User \"system:serviceaccount:monitoring:prometheus-k8s\" cannot list endpoints at the cluster scope"
......

可以看到有很多错误日志出现,都是xxx is forbidden,这说明是 RBAC 权限的问题,通过 prometheus 资源对象的配置可以知道 Prometheus 绑定了一个名为 prometheus-k8s 的 ServiceAccount 对象,而这个对象绑定的是一个名为 prometheus-k8s 的 ClusterRole:(prometheus-clusterRole.yaml)

apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRole
metadata:
name: prometheus-k8s
rules:
- apiGroups:
- ""
resources:
- nodes/metrics
verbs:
- get
- nonResourceURLs:
- /metrics
verbs:
- get

上面的权限规则中我们可以看到明显没有对 Service 或者 Pod 的 list 权限,所以报错了,要解决这个问题,我们只需要添加上需要的权限即可:

apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRole
metadata:
name: prometheus-k8s
rules:
- apiGroups:
- ""
resources:
- nodes
- services
- endpoints
- pods
- nodes/proxy
verbs:
- get
- list
- watch
- apiGroups:
- ""
resources:
- configmaps
- nodes/metrics
verbs:
- get
- nonResourceURLs:
- /metrics
verbs:
- get

更新上面的 ClusterRole 这个资源对象,然后重建下 Prometheus 的所有 Pod,正常就可以看到 targets 页面下面有 kubernetes-service-endpoints 这个监控任务了:

endpoints

我们这里自动监控了两个 Service,第一个就是我们之前创建的 Redis 的服务,我们在 Redis Service 中有两个特殊的 annotations:

annotations:
prometheus.io/scrape: "true"
prometheus.io/port: "9121"

所以被自动发现了,当然我们也可以用同样的方式去配置 Pod、Ingress 这些资源对象的自动发现。

数据持久化

上面我们在修改完权限的时候,重启了 Prometheus 的 Pod,如果我们仔细观察的话会发现我们之前采集的数据已经没有了,这是因为我们通过 prometheus 这个 CRD 创建的 Prometheus 并没有做数据的持久化,我们可以直接查看生成的 Prometheus Pod 的挂载情况就清楚了:

$ kubectl get pod prometheus-k8s-0 -n monitoring -o yaml
......
volumeMounts:
- mountPath: /etc/prometheus/config_out
name: config-out
readOnly: true
- mountPath: /prometheus
name: prometheus-k8s-db
......
volumes:
......
- emptyDir: {}
name: prometheus-k8s-db
......

我们可以看到 Prometheus 的数据目录 /prometheus 实际上是通过 emptyDir 进行挂载的,我们知道 emptyDir 挂载的数据的生命周期和 Pod 生命周期一致的,所以如果 Pod 挂掉了,数据也就丢失了,这也就是为什么我们重建 Pod 后之前的数据就没有了的原因,对应线上的监控数据肯定需要做数据的持久化的,同样的 prometheus 这个 CRD 资源也为我们提供了数据持久化的配置方法,由于我们的 Prometheus 最终是通过 Statefulset 控制器进行部署的,所以我们这里需要通过 storageclass 来做数据持久化,首先创建一个 StorageClass 对象:

apiVersion: storage.k8s.io/v1
kind: StorageClass
metadata:
name: prometheus-data-db
provisioner: fuseim.pri/ifs

这里我们声明一个 StorageClass 对象,其中 provisioner=fuseim.pri/ifs,则是因为我们集群中使用的是 nfs 作为存储后端,而前面我们课程中创建的 nfs-client-provisioner 中指定的 PROVISIONER_NAME 就为 fuseim.pri/ifs,这个名字不能随便更改,将该文件保存为 prometheus-storageclass.yaml:

$ kubectl create -f prometheus-storageclass.yaml
storageclass.storage.k8s.io "prometheus-data-db" created

然后在 prometheus 的 CRD 资源对象中添加如下配置:

storage:
volumeClaimTemplate:
spec:
storageClassName: prometheus-data-db
resources:
requests:
storage: 10Gi

注意这里的 storageClassName 名字为上面我们创建的 StorageClass 对象名称,然后更新 prometheus 这个 CRD 资源。更新完成后会自动生成两个 PVC 和 PV 资源对象:

$ kubectl get pvc -n monitoring
NAME STATUS VOLUME CAPACITY ACCESS MODES STORAGECLASS AGE
prometheus-k8s-db-prometheus-k8s-0 Bound pvc-0cc03d41-047a-11e9-a777-525400db4df7 10Gi RWO prometheus-data-db 8m
prometheus-k8s-db-prometheus-k8s-1 Bound pvc-1938de6b-047b-11e9-a777-525400db4df7 10Gi RWO prometheus-data-db 1m
$ kubectl get pv
NAME CAPACITY ACCESS MODES RECLAIM POLICY STATUS CLAIM STORAGECLASS REASON AGE
pvc-0cc03d41-047a-11e9-a777-525400db4df7 10Gi RWO Delete Bound monitoring/prometheus-k8s-db-prometheus-k8s-0 prometheus-data-db 2m
pvc-1938de6b-047b-11e9-a777-525400db4df7 10Gi RWO Delete Bound monitoring/prometheus-k8s-db-prometheus-k8s-1 prometheus-data-db 1m

现在我们再去看 Prometheus Pod 的数据目录就可以看到是关联到一个 PVC 对象上了。

$ kubectl get pod prometheus-k8s-0 -n monitoring -o yaml
......
volumeMounts:
- mountPath: /etc/prometheus/config_out
name: config-out
readOnly: true
- mountPath: /prometheus
name: prometheus-k8s-db
......
volumes:
......
- name: prometheus-k8s-db
persistentVolumeClaim:
claimName: prometheus-k8s-db-prometheus-k8s-0
......

现在即使我们的 Pod 挂掉了,数据也不会丢失了,最后,下面是我们 Prometheus Operator 系列课程中最终的创建资源清单文件,更多的信息可以在https://github.com/cnych/kubernetes-learning 下面查看。

apiVersion: monitoring.coreos.com/v1
kind: Prometheus
metadata:
labels:
prometheus: k8s
name: k8s
namespace: monitoring
spec:
alerting:
alertmanagers:
- name: alertmanager-main
namespace: monitoring
port: web
storage:
volumeClaimTemplate:
spec:
storageClassName: prometheus-data-db
resources:
requests:
storage: 10Gi
baseImage: quay.io/prometheus/prometheus
nodeSelector:
beta.kubernetes.io/os: linux
replicas: 2
secrets:
- etcd-certs
additionalScrapeConfigs:
name: additional-configs
key: prometheus-additional.yaml
resources:
requests:
memory: 400Mi
ruleSelector:
matchLabels:
prometheus: k8s
role: alert-rules
securityContext:
fsGroup: 2000
runAsNonRoot: true
runAsUser: 1000
serviceAccountName: prometheus-k8s
serviceMonitorNamespaceSelector: {}
serviceMonitorSelector: {}
version: v2.5.0

Prometheus Operator 自动发现和持久化的更多相关文章

  1. Prometheus + Consul 自动发现服务监控

    一.Prometheus支持的多种服务发现机制(常用如下) static_configs: 静态服务发现 file_sd_configs: 文件服务发现 dns_sd_configs: DNS 服务发 ...

  2. prometheus operator 部署

    prometheus operator 部署自定义记录 环境: k8s 1.11集群版本,kubeadm部署 docker 17.3.2版本 Centos 7系统 阿里云服务器 operator 源码 ...

  3. Prometheus监控神技--自动发现配置

    一.自动发现类型 在上一篇文中留了一个坑: 监控某个statefulset服务的时候,我在service文件中定义了个EP,然后把pod的ip写死在配置文件中,这样,当pod重启后,IP地址变化,就监 ...

  4. Elasticsearch之重要核心概念(cluster(集群)、shards(分配)、replicas(索引副本)、recovery(据恢复或叫数据重新分布)、gateway(es索引的持久化存储方式)、discovery.zen(es的自动发现节点机制机制)、Transport(内部节点或集群与客户端的交互方式)、settings(修改索引库默认配置)和mappings)

    Elasticsearch之重要核心概念如下: 1.cluster 代表一个集群,集群中有多个节点,其中有一个为主节点,这个主节点是可以通过选举产生的,主从节点是对于集群内部来说的.es的一个概念就是 ...

  5. Prometheus 自动发现

    目录 简介 环境说明 静态配置 重新加载配置文件 基于文件发现配置 重新加载配置文件 添加主机测试 基于DNS的A记录 修改配置文件 重新加载配置文件 基于DNS的SRV记录自动发现 修改配置文件 重 ...

  6. Prometheus基于consul自动发现监控对象 https://www.iloxp.com/archive/11/

      Prometheus 监控目标为什么要自动发现 频繁对Prometheus配置文件进行修改,无疑给运维人员带来很大的负担,还有可能直接变成一个“配置小王子”,即使是配置小王子也会存在人为失误的情况 ...

  7. prometheus(5)之consul服务自动发现及pushgetway

    pushgetway(push上传metric数据) Pushgateway简介 Pushgateway是prometheus的一个组件,prometheus server默认是通过exporter主 ...

  8. Prometheus Operator 监控Kubernetes

    Prometheus Operator 监控Kubernetes 1. Prometheus的基本架构 ​ Prometheus是一个开源的完整监控解决方案,涵盖数据采集.查询.告警.展示整个监控流程 ...

  9. Kubernetes 监控:Prometheus Operator

    安装 前面的章节中我们学习了用自定义的方式来对 Kubernetes 集群进行监控,基本上也能够完成监控报警的需求了.但实际上对上 Kubernetes 来说,还有更简单方式来监控报警,那就是 Pro ...

随机推荐

  1. .net core 修改 Identity/AspNetUsers 数据库

    众所周知,.net core有一套完整的用户管理功能.使用它就能实现用户的管理及登录登出功能.现在问题来了,我们有时候需要添加一些字段,该怎么办呢?当然是修改他呀.修改方法参考链接:https://m ...

  2. Quickstart: Create and publish a package using Visual Studio (.NET Framework, Windows)

    https://docs.microsoft.com/en-us/nuget/quickstart/create-and-publish-a-package-using-visual-studio-n ...

  3. JAVA 基础编程练习题17 【程序 17 猴子吃桃问题】

    17 [程序 17 猴子吃桃问题] 题目:猴子吃桃问题:猴子第一天摘下若干个桃子,当即吃了一半,还不瘾,又多吃了一个 第二天早上又 将剩下的桃子吃掉一半,又多吃了一个.以后每天早上都吃了前一天剩下的一 ...

  4. ubuntu kylin 18.04安装docker笔记

    删除原有的docker应用(如果有的话): sudo apt-get remove docker docker-engine docker.io 更新一下: sudo apt-get update 下 ...

  5. Sql 中常用日期转换Convert(Datetime) convert datetime

    Convert(data_type,expression[,style]) Convert(varchar(10),字段名,转换格式) 说明:此样式一般在时间类型(datetime,smalldate ...

  6. swift 第九课 用tableview 做一个下拉菜单Menu

    写到这里的时候,自己这个项目已经完成了一半左右,项目进度自己还是挺满意.今天又有一个新的布局,要实现个下拉菜单,刚开始写的时候,觉得会很容易,后来发现也是小错不断, 我想自己限制的自己属于写博客的初期 ...

  7. Ubuntu 14.04安装Python3

    1.添加源 sudo add-apt-repository ppa:fkrull/deadsnakes 2.更新 & 安装 sudo apt-get update sudo apt- pyth ...

  8. 在Ubuntu上安装Intellij IDEA并创建桌面快捷方式

    环境信息 版本号 Ubuntu 18.04 LTS Intellij IDEA 2019.1.3 1.首先从官网获取安装包 官方下载地址传送门 然后我就在下载目录下得到了tar.gz的包 2.接下来开 ...

  9. Linux 之 netstat使用

    netstat介绍 Netstat 命令用于显示各种网络相关信息,如网络连接,路由表,接口状态 (Interface Statistics),masquerade 连接,多播成员 (Multicast ...

  10. Matlab求微分方程的符号解1

    一.常微分方程的求解 例1. 例2. 例3. 通常我们使用syms 和dsolve来求解: first: second:表示 third:如果有必要 功能函数diff可以完成一元或多元函数任意阶数的微 ...