1.K-Means算法

K-Means算法,也被称为K-平均或K-均值算法,是一种广泛使用的聚类算法。K-Means算法是聚焦于相似的无监督的算法,以距离作为数据对象间相似性度量的标准,即数据对象间的距离越小,则它们的相似性越高,则它们越有可能在同一个类簇。之所以被称为K-Means是因为它可以发现k个不同的簇,且每个簇的中心采用簇中所含值的均值计算而成。

2.聚类的概念

聚类,则是给定的样本没有事先确定类别,根据自己需要,确定类别数量,再把样本归到不同的类别里面。也就是说,同样是垃圾分类的例子,你给一堆垃圾,我可以根据可回收、不可回收分为聚类为两堆;也可以根据可回收、不可回收、厨余垃圾聚类为三堆。而其中聚类为同一堆的条件,我们可以理解为垃圾间的相似程度。

3.k-means算法思想

1.从数据集中随机选取k个数据对象作为k个簇的初始聚类中心点,且每个数据对象对应于一个簇;
2.将剩余的数据对象根据其与各个簇中心点的距离,分别指派到离其距离最近的簇中;
3.更新每个簇的聚类中心(即重新计算各个簇内所有对象的平均值,重新分配各个数据对象);
4.直到准则函数收敛或者聚类中心不再变化,否则转到step3。

4. 代码实现

运行结果:

K-Means算法及代码实现的更多相关文章

  1. KNN 与 K - Means 算法比较

    KNN K-Means 1.分类算法 聚类算法 2.监督学习 非监督学习 3.数据类型:喂给它的数据集是带label的数据,已经是完全正确的数据 喂给它的数据集是无label的数据,是杂乱无章的,经过 ...

  2. K-means算法

    K-means算法很简单,它属于无监督学习算法中的聚类算法中的一种方法吧,利用欧式距离进行聚合啦. 解决的问题如图所示哈:有一堆没有标签的训练样本,并且它们可以潜在地分为K类,我们怎么把它们划分呢?  ...

  3. 机器学习算法及代码实现–K邻近算法

    机器学习算法及代码实现–K邻近算法 1.K邻近算法 将标注好类别的训练样本映射到X(选取的特征数)维的坐标系之中,同样将测试样本映射到X维的坐标系之中,选取距离该测试样本欧氏距离(两点间距离公式)最近 ...

  4. 编程算法 - 最小的k个数 红黑树 代码(C++)

    最小的k个数 红黑树 代码(C++) 本文地址: http://blog.csdn.net/caroline_wendy 题目: 输入n个整数, 找出当中的最小k个数. 使用红黑树(multiset) ...

  5. [Machine-Learning] K临近算法-简单例子

    k-临近算法 算法步骤 k 临近算法的伪代码,对位置类别属性的数据集中的每个点依次执行以下操作: 计算已知类别数据集中的每个点与当前点之间的距离: 按照距离递增次序排序: 选取与当前点距离最小的k个点 ...

  6. Python实现各种排序算法的代码示例总结

    Python实现各种排序算法的代码示例总结 作者:Donald Knuth 字体:[增加 减小] 类型:转载 时间:2015-12-11我要评论 这篇文章主要介绍了Python实现各种排序算法的代码示 ...

  7. 10个经典的C语言面试基础算法及代码

    10个经典的C语言面试基础算法及代码作者:码农网 – 小峰 原文地址:http://www.codeceo.com/article/10-c-interview-algorithm.html 算法是一 ...

  8. 从K近邻算法谈到KD树、SIFT+BBF算法

    转自 http://blog.csdn.net/v_july_v/article/details/8203674 ,感谢july的辛勤劳动 前言 前两日,在微博上说:“到今天为止,我至少亏欠了3篇文章 ...

  9. Python实现kNN(k邻近算法)

    Python实现kNN(k邻近算法) 运行环境 Pyhton3 numpy科学计算模块 计算过程 st=>start: 开始 op1=>operation: 读入数据 op2=>op ...

  10. 经典面试题(二)附答案 算法+数据结构+代码 微软Microsoft、谷歌Google、百度、腾讯

    1.正整数序列Q中的每个元素都至少能被正整数a和b中的一个整除,现给定a和b,需要计算出Q中的前几项, 例如,当a=3,b=5,N=6时,序列为3,5,6,9,10,12 (1).设计一个函数void ...

随机推荐

  1. 内涵段子——脑筋急转弯——spider

    # python 3.7 from urllib.request import Request,urlopen import re,time class Neihan(object): def __i ...

  2. JAVA静态方法是否可以被继承?

    结论:java中静态属性和静态方法可以被继承,但是没有被重写(overwrite)而是被隐藏. 原因: 1). 静态方法和属性是属于类的,调用的时候直接通过类名.方法名完成对,不需要继承机制及可以调用 ...

  3. navicat for oracle 导入xlsx文件提示无法打开xlsx文件

    navicat for oracle 导入xlsx文件提示:无法打开xlsx文件 导入环境: navicat for oracle wps状态的xlsx文件 处理: 将wps状态的xlsx文件,打开方 ...

  4. Linux命令——cat、more、less、head、tail

    cat 一次显示整个文件 -n:显示行号 -b :和 -n 相似,只不过对于空白行不编号 -s:当遇到有连续两行以上的空白行,就代换为一行的空白行 -E显示换行符 [root@localhost ~] ...

  5. Djang drf:APIView源码分析

    Django REST framework 简介   在序列化与反序列化时,虽然操作的数据不尽相同,但是执行的过程却是相似的,也就是说这部分代码是可以复用简化编写的.        开发REST AP ...

  6. CentOS 7 根目录分区扩容

    查看现有磁盘信息,可以看出根分区有96G [root@localhost ~]# df -h Filesystem Size Used Avail Use% Mounted on /dev/mappe ...

  7. Reverse数组以及大O表达式

    这篇主要是对数组实现一个倒排序(比如数组1.2.3,最后输出3.2.1),当然实现这个功能是非常easy的事,但是这里需要引入另外一个很重要的概念-----如何计算一个算法的时间复杂度并学会用大O表达 ...

  8. kafka相关

    一.消息队列优点(解耦.异步.削峰)二.用消息队列都有什么优点和缺点?三.kafka.activemq.rabbitmq.rocketmq都有什么区别四.如何保证消息队列的高可用啊?五.如何保证消息不 ...

  9. window open() 方法

    open() 方法用于打开一个新的浏览器窗口或查找一个已命名的窗口. 语法 window.open(URL,name,specs,replace) 参数 说明 URL 可选.打开指定的页面的URL.如 ...

  10. linux命令集合(二)

    yum源的配置 yum  得配置yum源,配置阿里云的 两个 yum源  ,阿里云的yum源中,会有 mariadb的软件包   阿里云的yum仓库中,mariadb版本如下 mariadb      ...