题目传送门(内部题143)


输入格式

  输入文件的第一行为三个整数$n,m,t$。其中$t$是数据类型。
  接下来$m$行,每行两个正整数$u,v$,表示图中的一条边。数据保证不存在重边或自环的情况。    
  输入数据的最后一行是$n$个正整数,表示$W_1,W_2,...,W_n$。


输出格式

  输出文件共包含两行两个整数。第一行,若$t\neq 2$,则你需要输出最大的联合权值(无则输出$-1$),否则输出$0$;第二行,若$t\neq 1$,则你需要输出联合权值的总和,否则输出$0$。


样例

样例输入:

4 4 3
1 2
1 3
2 3
2 4
100 1 100 1

样例输出:

100
400


数据范围与提示

  对于$10\%$的数据,满足$n\leqslant 100$。
  对于另$30\%$的数据,满足$t=1$。
  对于另$30\%$的数据,满足$t=1$。
  对于$100\%$的数据,满足$1\leqslant n,m\leqslant 30,000,1\leqslant t\leqslant 3,1\leqslant W_i\leqslant 100$。


题解

暴力$95$,然而我读错题了……

只要$w$不一样就行,然而我还以为是一道$SB$题(不过本来也是)。

发现求和很好求,考虑求最大值。

去**正解。

考虑剪枝。

可以把连向一个点的所有点按点权从大到小排序,枚举点的时候找到最先的一组$break$就好了。

时间复杂度:$\Theta(n^2)$。

期望得分:$10$分。

实际得分:$100$分。


代码时刻

#include<bits/stdc++.h>
using namespace std;
int n,m,t;
int w[30001];
bitset<30000> bit[30001];
vector<int> vec[30001];
int mx;
long long ans;
bool cmp(int a,int b){return w[a]>w[b];}
int main()
{
scanf("%d%d%d",&n,&m,&t);
for(int i=1;i<=m;i++)
{
int u,v;
scanf("%d%d",&u,&v);
vec[u].push_back(v);
vec[v].push_back(u);
bit[u][v]=bit[v][u]=1;
}
for(int i=1;i<=n;i++)scanf("%d",&w[i]);
for(int i=1;i<=n;i++)sort(vec[i].begin(),vec[i].end(),cmp);
for(int x=1;x<=n;x++)
for(int i=0;i<vec[x].size();i++)
for(int j=i+1;j<vec[x].size();j++)
{
if(bit[vec[x][i]][vec[x][j]])continue;
mx=max(mx,w[vec[x][i]]*w[vec[x][j]]);
break;
}
for(int x=1;x<=n;x++)
{
int l=0,r=0;
for(int i=0;i<vec[x].size();i++)
{
ans-=1LL*w[x]*w[vec[x][i]]*(bit[x]&bit[vec[x][i]]).count();
l+=w[vec[x][i]];r+=w[vec[x][i]]*w[vec[x][i]];
}
ans+=1LL*l*l-r;
}
printf("%d\n%lld\n",(t==2)?0:mx,(t==1)?0:ans);
return 0;
}

rp++

[CSP-S模拟测试]:联合权值·改(暴力)的更多相关文章

  1. 联合权值(NOIP2014)奇特的模拟。。

    原题传送门 这道题瞄了一眼还以为是SPFA最短路. 后面发现距离为2.. 好像可以枚举中间点来着? 时间效率O(n*(2n-2))≍O(n^2) BOOM!(PS:9018上过了,说明数据太水了..) ...

  2. P1906联合权值

    描述 无向连通图 G 有 n 个点,n-1 条边.点从 1 到 n 依次编号,编号为 i 的点的权值为 WiWi, 每条边的长度均为 1.图上两点(u, v)的距离定义为 u 点到 v 点的最短距离. ...

  3. NOIp 2014 #2 联合权值 Label:图论 !!!未AC

    题目描述 无向连通图G 有n 个点,n - 1 条边.点从1 到n 依次编号,编号为 i 的点的权值为W i ,每条边的长度均为1 .图上两点( u , v ) 的距离定义为u 点到v 点的最短距离. ...

  4. luogu P1351 联合权值

    题目描述 无向连通图G 有n 个点,n - 1 条边.点从1 到n 依次编号,编号为 i 的点的权值为W i ,每条边的长度均为1 .图上两点( u , v ) 的距离定义为u 点到v 点的最短距离. ...

  5. Codevs 3728 联合权值

    问题描述 无向连通图G有n个点,n-1条边.点从1到n依次编号,编号为i的点的权值为Wi ,每 条边的长度均为1.图上两点(u,v)的距离定义为u点到v点的最短距离.对于图G上的点 对(u,v),若它 ...

  6. [NOIP2014] 提高组 洛谷P1351 联合权值

    题目描述 无向连通图G 有n 个点,n - 1 条边.点从1 到n 依次编号,编号为 i 的点的权值为W i ,每条边的长度均为1 .图上两点( u , v ) 的距离定义为u 点到v 点的最短距离. ...

  7. 【洛谷P1351】联合权值

    我们枚举中间点,当连的点数不小于2时进行处理 最大值好搞 求和:设中间点 i 所连所有点权之和为sum 则对于每个中间点i的联合权值之和为: w[j]*(sum-w[j])之和 #include< ...

  8. Noip2014 提高组 T2 联合权值 连通图+技巧

    联合权值 描述 无向连通图 G 有 n 个点,n-1 条边.点从 1 到 n 依次编号,编号为 i 的点的权值为 WiWi, 每条边的长度均为 1.图上两点(u, v)的距离定义为 u 点到 v 点的 ...

  9. NOIP2014 联合权值

    2.联合权值 (link.cpp/c/pas) [问题描述] 无向连通图G有n个点,n-1条边.点从1到n依次编号,编号为i的点的权值为Wi  ,每条边的长度均为1.图上两点(u, v)的距离定义为u ...

随机推荐

  1. vue全局设置请求头 (封装axios请求)

    Vue.http.interceptors.push((request, next) => { // 请求发送前的处理逻辑 request.headers.set('Authorization' ...

  2. 微信小程序常用事件

    bind bind事件绑定不会阻止冒泡事件向上冒泡,catch事件绑定可以阻止冒泡事件向上冒泡. bindtap  跳转页面 bindchange  .value 改变时触发 change 事件 bi ...

  3. latex中文环境配置(针对北大模板,开题报告+中期答辩+毕业论文)

    最近自己在忙着开题,中文环境真的是emm 以下只针对北大的毕业论文模板,至于其他的中文环境没有尝试 主要是用不同的latex编辑器会报不同的错误,当然我最后还是统一成了pdflatex,经过无数次尝试 ...

  4. Fiddler抓取手机APP程序数据包

    1.下载并安装Fiddler 下载地址:https://www.telerik.com/download/fiddler 2.设置Fiddler可监听远程通讯 前提条件:需要监听的手机和Fiddler ...

  5. JAVA语言程序设计课后习题----第一单元解析(仅供参考)

    1 本题是水题,基本的输出语句 public class test { public static void main(String[] args) { // 相邻的两个 "" 要 ...

  6. 通过sql判断时间区间是否存在数据

    在做项目的时候遇到过一个问题,用户需要获取当前月或者几个月的数据,但是有一个要求,如果已经存在一张单已经包含了这几个月的数据,那么就不能再提取到重复的数据. 其实这个问题,我做完了我的方式之后才发现, ...

  7. c++11 移动语义move semantics

    performance, expensive object copies move semantics, temporary objects implemented with rvalue refer ...

  8. SpringBoot static修饰的字段/方法如何获取application.yml配置

    SpringBoot的application.yml一种特殊的应用场景,一般我们获取application.yml的配置文件只要@Value就可以获取到值了,但是如果是static修饰的字段肯定就不能 ...

  9. 【异常】postman能够请求成功获取到参数,前端请求的却请求不到

    1 前端联调的时候,反馈自己的参数没有生效,无论传递任何参数都是一样的结果 盯了一下日志发现 postman请求的是   :{"getParameter":{"provi ...

  10. 6、SSH远程管理服务实战

    1.SSH基本概述 SSH是一个安全协议,在进行数据传输时,会对数据包进行加密处理,加密后在进行数据传输.确保了数据传输安全.那SSH服务主要功能有哪些呢? 1.提供远程连接服务器的服务. 2.对传输 ...