题目传送门(内部题143)


输入格式

  输入文件的第一行为三个整数$n,m,t$。其中$t$是数据类型。
  接下来$m$行,每行两个正整数$u,v$,表示图中的一条边。数据保证不存在重边或自环的情况。    
  输入数据的最后一行是$n$个正整数,表示$W_1,W_2,...,W_n$。


输出格式

  输出文件共包含两行两个整数。第一行,若$t\neq 2$,则你需要输出最大的联合权值(无则输出$-1$),否则输出$0$;第二行,若$t\neq 1$,则你需要输出联合权值的总和,否则输出$0$。


样例

样例输入:

4 4 3
1 2
1 3
2 3
2 4
100 1 100 1

样例输出:

100
400


数据范围与提示

  对于$10\%$的数据,满足$n\leqslant 100$。
  对于另$30\%$的数据,满足$t=1$。
  对于另$30\%$的数据,满足$t=1$。
  对于$100\%$的数据,满足$1\leqslant n,m\leqslant 30,000,1\leqslant t\leqslant 3,1\leqslant W_i\leqslant 100$。


题解

暴力$95$,然而我读错题了……

只要$w$不一样就行,然而我还以为是一道$SB$题(不过本来也是)。

发现求和很好求,考虑求最大值。

去**正解。

考虑剪枝。

可以把连向一个点的所有点按点权从大到小排序,枚举点的时候找到最先的一组$break$就好了。

时间复杂度:$\Theta(n^2)$。

期望得分:$10$分。

实际得分:$100$分。


代码时刻

#include<bits/stdc++.h>
using namespace std;
int n,m,t;
int w[30001];
bitset<30000> bit[30001];
vector<int> vec[30001];
int mx;
long long ans;
bool cmp(int a,int b){return w[a]>w[b];}
int main()
{
scanf("%d%d%d",&n,&m,&t);
for(int i=1;i<=m;i++)
{
int u,v;
scanf("%d%d",&u,&v);
vec[u].push_back(v);
vec[v].push_back(u);
bit[u][v]=bit[v][u]=1;
}
for(int i=1;i<=n;i++)scanf("%d",&w[i]);
for(int i=1;i<=n;i++)sort(vec[i].begin(),vec[i].end(),cmp);
for(int x=1;x<=n;x++)
for(int i=0;i<vec[x].size();i++)
for(int j=i+1;j<vec[x].size();j++)
{
if(bit[vec[x][i]][vec[x][j]])continue;
mx=max(mx,w[vec[x][i]]*w[vec[x][j]]);
break;
}
for(int x=1;x<=n;x++)
{
int l=0,r=0;
for(int i=0;i<vec[x].size();i++)
{
ans-=1LL*w[x]*w[vec[x][i]]*(bit[x]&bit[vec[x][i]]).count();
l+=w[vec[x][i]];r+=w[vec[x][i]]*w[vec[x][i]];
}
ans+=1LL*l*l-r;
}
printf("%d\n%lld\n",(t==2)?0:mx,(t==1)?0:ans);
return 0;
}

rp++

[CSP-S模拟测试]:联合权值·改(暴力)的更多相关文章

  1. 联合权值(NOIP2014)奇特的模拟。。

    原题传送门 这道题瞄了一眼还以为是SPFA最短路. 后面发现距离为2.. 好像可以枚举中间点来着? 时间效率O(n*(2n-2))≍O(n^2) BOOM!(PS:9018上过了,说明数据太水了..) ...

  2. P1906联合权值

    描述 无向连通图 G 有 n 个点,n-1 条边.点从 1 到 n 依次编号,编号为 i 的点的权值为 WiWi, 每条边的长度均为 1.图上两点(u, v)的距离定义为 u 点到 v 点的最短距离. ...

  3. NOIp 2014 #2 联合权值 Label:图论 !!!未AC

    题目描述 无向连通图G 有n 个点,n - 1 条边.点从1 到n 依次编号,编号为 i 的点的权值为W i ,每条边的长度均为1 .图上两点( u , v ) 的距离定义为u 点到v 点的最短距离. ...

  4. luogu P1351 联合权值

    题目描述 无向连通图G 有n 个点,n - 1 条边.点从1 到n 依次编号,编号为 i 的点的权值为W i ,每条边的长度均为1 .图上两点( u , v ) 的距离定义为u 点到v 点的最短距离. ...

  5. Codevs 3728 联合权值

    问题描述 无向连通图G有n个点,n-1条边.点从1到n依次编号,编号为i的点的权值为Wi ,每 条边的长度均为1.图上两点(u,v)的距离定义为u点到v点的最短距离.对于图G上的点 对(u,v),若它 ...

  6. [NOIP2014] 提高组 洛谷P1351 联合权值

    题目描述 无向连通图G 有n 个点,n - 1 条边.点从1 到n 依次编号,编号为 i 的点的权值为W i ,每条边的长度均为1 .图上两点( u , v ) 的距离定义为u 点到v 点的最短距离. ...

  7. 【洛谷P1351】联合权值

    我们枚举中间点,当连的点数不小于2时进行处理 最大值好搞 求和:设中间点 i 所连所有点权之和为sum 则对于每个中间点i的联合权值之和为: w[j]*(sum-w[j])之和 #include< ...

  8. Noip2014 提高组 T2 联合权值 连通图+技巧

    联合权值 描述 无向连通图 G 有 n 个点,n-1 条边.点从 1 到 n 依次编号,编号为 i 的点的权值为 WiWi, 每条边的长度均为 1.图上两点(u, v)的距离定义为 u 点到 v 点的 ...

  9. NOIP2014 联合权值

    2.联合权值 (link.cpp/c/pas) [问题描述] 无向连通图G有n个点,n-1条边.点从1到n依次编号,编号为i的点的权值为Wi  ,每条边的长度均为1.图上两点(u, v)的距离定义为u ...

随机推荐

  1. NSIS MUI 的内置向导页面

    MUI 的内置向导页面和安装程序有关的向导页面MUI_PAGE_WELCOME 该向导页面显示欢迎信息MUI_PAGE_LICENSE text/rtf_file 该向导页面显示软件授权申明MUI_P ...

  2. C# 知识点笔记:IEnumerable<>的使用,利用反射动态调用方法

    IEnumerable<T>的使用 创建一个IEnumerable对象 List<string> fruits = new List<string> { " ...

  3. OGG学习笔记01

    OGG学习笔记01-基础概述OGG(Oracle Golden Gate),最近几年在数据同步.容灾领域特别火,甚至比Oracle自己的原生产品DataGuard还要风光,主要是因为其跨平台.跨数据库 ...

  4. Jetson TX1 安装ROS操作系统

    直接按照官网上的步骤安装即可,其中会出现很多bug,主要是依赖库安装的问题,添加清华源和中科大源,(注意:中科大源会有些问题)需要apt-get update 和 apt-get upgrade更新库 ...

  5. (十二)Linux Kernel suspend and resume

    一.对于休眠(suspend)的简单介绍   在Linux中,休眠主要分三个主要的步骤:   1) 冻结用户态进程和内核态任务   2) 调用注册的设备的suspend的回调函数, 顺序是按照注册顺序 ...

  6. Git 简要教程

    Git是一个管理系统,管理版本,管理内容(CMS),管理工作等. Git主要还是一个开源的分布式版本控制系统,用于敏捷高效地处理任何或小或大的项目. 工作流程是这样的: 克隆 Git 资源作为工作目录 ...

  7. Beta冲刺——星期三

    这个作业属于哪个课程 <课程的链接> 这个作业要求在哪里 <作业要求的链接> 团队名称 飞猪们 这个作业的目标 剩余任务预估,分配任务(开发,测试等).按要求提交当天冲刺报告. ...

  8. Ubuntu 18.04 手动升级内核

    一般情况下,系统正常更新,会自动升级内核到可用的最新版. 查看已安装的内核 $ sudo dpkg -l | grep linux-image 查看当前使用的内核 $ sudo uname -r 查看 ...

  9. Python:用filter函数求素数 (再理解generator)

    目的:更熟悉应用generator. 参考:https://www.liaoxuefeng.com/wiki/1016959663602400/1017404530360000 素数定义: 素数:质数 ...

  10. 代理模式-aop

    https://www.jianshu.com/p/a82509c4bb0d 在软件业,AOP为Aspect Oriented Programming的缩写,意为:面向切面编程,通过预编译方式和运行期 ...