Python学习笔记—Dict和set
dict
Python内置了字典:dict的支持,dict全称dictionary,在其他语言中也称为map,使用键-值(key-value)存储,具有极快的查找速度。
举个例子,假设要根据同学的名字查找对应的成绩,如果用list实现,需要两个list:
names = ['Michael', 'Bob', 'Tracy']
scores = [95, 75, 85]
给定一个名字,要查找对应的成绩,就先要在names中找到对应的位置,再从scores取出对应的成绩,list越长,耗时越长。
如果用dict实现,只需要一个“名字”-“成绩”的对照表,直接根据名字查找成绩,无论这个表有多大,查找速度都不会变慢。用Python写一个dict如下:
>>> d = {'Michael': 95, 'Bob': 75, 'Tracy': 85}
>>> d['Michael']
95
为什么dict查找速度这么快?因为dict的实现原理和查字典是一样的。假设字典包含了1万个汉字,我们要查某一个字,一个办法是把字典从第一页往后翻,直到找到我们想要的字为止,这种方法就是在list中查找元素的方法,list越大,查找越慢。
第二种方法是先在字典的索引表里(比如部首表)查这个字对应的页码,然后直接翻到该页,找到这个字,无论找哪个字,这种查找速度都非常快,不会随着字典大小的增加而变慢。
dict就是第二种实现方式,给定一个名字,比如'Michael'
,dict在内部就可以直接计算出Michael
对应的存放成绩的“页码”,也就是95
这个数字存放的内存地址,直接取出来,所以速度非常快。
你可以猜到,这种key-value存储方式,在放进去的时候,必须根据key算出value的存放位置,这样,取的时候才能根据key直接拿到value。
把数据放入dict的方法,除了初始化时指定外,还可以通过key放入:
>>> d['Adam'] = 67
>>> d['Adam']
67
由于一个key只能对应一个value,所以,多次对一个key放入value,后面的值会把前面的值冲掉:
>>> d['Jack'] = 90
>>> d['Jack']
90
>>> d['Jack'] = 88
>>> d['Jack']
88
如果key不存在,dict就会报错:
>>> d['Thomas']
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
KeyError: 'Thomas'
要避免key不存在的错误,有两种办法,一是通过in
判断key是否存在:
>>> 'Thomas' in d
False
二是通过dict提供的get方法,如果key不存在,可以返回None,或者自己指定的value:
>>> d.get('Thomas')
>>> d.get('Thomas', -1)
-1
注意:返回None的时候Python的交互式命令行不显示结果。
要删除一个key,用pop(key)
方法,对应的value也会从dict中删除:
>>> d.pop('Bob')
75
>>> d
{'Michael': 95, 'Tracy': 85}
请务必注意,dict内部存放的顺序和key放入的顺序是没有关系的。
和list比较,dict有以下几个特点:
- 查找和插入的速度极快,不会随着key的增加而增加;
- 需要占用大量的内存,内存浪费多。
而list相反:
- 查找和插入的时间随着元素的增加而增加;
- 占用空间小,浪费内存很少。
所以,dict是用空间来换取时间的一种方法。
dict可以用在需要高速查找的很多地方,在Python代码中几乎无处不在,正确使用dict非常重要,需要牢记的第一条就是dict的key必须是不可变对象。
这是因为dict根据key来计算value的存储位置,如果每次计算相同的key得出的结果不同,那dict内部就完全混乱了。这个通过key计算位置的算法称为哈希算法(Hash)。
要保证hash的正确性,作为key的对象就不能变。在Python中,字符串、整数等都是不可变的,因此,可以放心地作为key。而list是可变的,就不能作为key:
>>> key = [1, 2, 3]
>>> d[key] = 'a list'
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
TypeError: unhashable type: 'list'
set
set和dict类似,也是一组key的集合,但不存储value。由于key不能重复,所以,在set中,没有重复的key。
要创建一个set,需要提供一个list作为输入集合:
>>> s = set([1, 2, 3])
>>> s
set([1, 2, 3])
注意,传入的参数[1, 2, 3]
是一个list,而显示的set([1, 2, 3])
只是告诉你这个set内部有1,2,3这3个元素,显示的[]不表示这是一个list。
重复元素在set中自动被过滤:
>>> s = set([1, 1, 2, 2, 3, 3])
>>> s
set([1, 2, 3])
通过add(key)
方法可以添加元素到set中,可以重复添加,但不会有效果:
>>> s.add(4)
>>> s
set([1, 2, 3, 4])
>>> s.add(4)
>>> s
set([1, 2, 3, 4])
通过remove(key)
方法可以删除元素:
>>> s.remove(4)
>>> s
set([1, 2, 3])
set可以看成数学意义上的无序和无重复元素的集合,因此,两个set可以做数学意义上的交集、并集等操作:
>>> s1 = set([1, 2, 3])
>>> s2 = set([2, 3, 4])
>>> s1 & s2
set([2, 3])
>>> s1 | s2
set([1, 2, 3, 4])
set和dict的唯一区别仅在于没有存储对应的value,但是,set的原理和dict一样,所以,同样不可以放入可变对象,因为无法判断两个可变对象是否相等,也就无法保证set内部“不会有重复元素”。试试把list放入set,看看是否会报错。
再议不可变对象
上面我们讲了,str是不变对象,而list是可变对象。
对于可变对象,比如list,对list进行操作,list内部的内容是会变化的,比如:
>>> a = ['c', 'b', 'a']
>>> a.sort()
>>> a
['a', 'b', 'c']
而对于不可变对象,比如str,对str进行操作呢:
>>> a = 'abc'
>>> a.replace('a', 'A')
'Abc'
>>> a
'abc'
虽然字符串有个replace()
方法,也确实变出了'Abc'
,但变量a
最后仍是'abc'
,应该怎么理解呢?
我们先把代码改成下面这样:
>>> a = 'abc'
>>> b = a.replace('a', 'A')
>>> b
'Abc'
>>> a
'abc'
要始终牢记的是,a
是变量,而'abc'
才是字符串对象!有些时候,我们经常说,对象a
的内容是'abc'
,但其实是指,a
本身是一个变量,它指向的对象的内容才是'abc'
:
当我们调用a.replace('a', 'A')
时,实际上调用方法replace
是作用在字符串对象'abc'
上的,而这个方法虽然名字叫replace
,但却没有改变字符串'abc'
的内容。相反,replace
方法创建了一个新字符串'Abc'
并返回,如果我们用变量b
指向该新字符串,就容易理解了,变量a
仍指向原有的字符串'abc'
,但变量b
却指向新字符串'Abc'
了:
所以,对于不变对象来说,调用对象自身的任意方法,也不会改变该对象自身的内容。相反,这些方法会创建新的对象并返回,这样,就保证了不可变对象本身永远是不可变的。
小结
使用key-value存储结构的dict在Python中非常有用,选择不可变对象作为key很重要,最常用的key是字符串。
tuple虽然是不变对象,但试试把(1, 2, 3)
和(1, [2, 3])
放入dict或set中,并解释结果。
Python学习笔记—Dict和set的更多相关文章
- Python学习笔记 - dict和set
dict #!/usr/bin/env python3 # -*- coding: utf-8 -*- #dict >>> d = {'Michael': 95, 'Bob': 75 ...
- python学习笔记整理——字典
python学习笔记整理 数据结构--字典 无序的 {键:值} 对集合 用于查询的方法 len(d) Return the number of items in the dictionary d. 返 ...
- Python学习笔记(十四)
Python学习笔记(十四): Json and Pickle模块 shelve模块 1. Json and Pickle模块 之前我们学习过用eval内置方法可以将一个字符串转成python对象,不 ...
- 【python学习笔记】4.字典:当索引不好用时
[python学习笔记]4.字典:当索引不好用时 字典是python中唯一内建的map类型 创建: key可以为任何不可改变的类型,包括内置类型,或者元组,字符串 通过大括号: phonebook={ ...
- Deep learning with Python 学习笔记(10)
生成式深度学习 机器学习模型能够对图像.音乐和故事的统计潜在空间(latent space)进行学习,然后从这个空间中采样(sample),创造出与模型在训练数据中所见到的艺术作品具有相似特征的新作品 ...
- Deep learning with Python 学习笔记(1)
深度学习基础 Python 的 Keras 库来学习手写数字分类,将手写数字的灰度图像(28 像素 ×28 像素)划分到 10 个类别 中(0~9) 神经网络的核心组件是层(layer),它是一种数据 ...
- Python学习笔记_Python对象
Python学习笔记_Python对象 Python对象 标准类型 其它内建类型 类型对象和type类型对象 Python的Null对象None 标准类型操作符 对象值的比較 对象身份比較 布尔类型 ...
- Python学习笔记之类与对象
这篇文章介绍有关 Python 类中一些常被大家忽略的知识点,帮助大家更全面的掌握 Python 中类的使用技巧 1.与类和对象相关的内置方法 issubclass(class, classinfo) ...
- Python 学习笔记(下)
Python 学习笔记(下) 这份笔记是我在系统地学习python时记录的,它不能算是一份完整的参考,但里面大都是我觉得比较重要的地方. 目录 Python 学习笔记(下) 函数设计与使用 形参与实参 ...
随机推荐
- elementUI使用实录
新项目开发用到了elementUI,但是对这个虽然会用,但是细枝末节的东西每次都需要看官方文档才能想起来怎么用,故,记之. 1.form表单 -- 表单验证 在防止用户犯错的前提下,尽可能让用户更早地 ...
- Java web 项目 web.xml 配置文件加载过程
转载自:http://blog.csdn.net/luoliehe/article/details/46884757#comments WEB加载web.xml初始化过程: 在启动Web项目时,容器( ...
- java_day10_多线程
第十章:线程 1.进程和线程的概述 1)进程和线程定义 进程是具有一定独立功能的程序关于某个数据集合上的一次运行活动,进程是系统进行资源分配和调度的一个独立单位. 线程是进程的一个实体,是CPU调度和 ...
- 第三章·Logstash入门-部署与测试
1.Logstash环境准备与安装 Logstash环境准备 关闭防火墙 #CentOS6 关闭防火墙 [root@elkstack01 ~]# /etc/init.d/iptables stop # ...
- 【2017-05-04】winfrom进程、线程、用户控件
一.进程 一个进程就是一个程序,利用进程可以在一个程序中打开另一个程序. 1.开启某个进程Process.Start("文件缩写名"); 注意:Process要解析命名空间. 2. ...
- IPC之msgutil.c源码解读
// SPDX-License-Identifier: GPL-2.0-or-later /* * linux/ipc/msgutil.c * Copyright (C) 1999, 2004 Man ...
- Linux配置JDK环境
wget --no-check-certificate --no-cookies --header "Cookie: oraclelicense=accept-securebackup-co ...
- 查看电脑物理地址(MAC)方法
首先打开电脑,按ctrl+R键,将会出现以下界面 然后直接点击确认即可,会出现管理员界面,如下 我们现在有两种查看MAC地址的方法: 方法一:.直接输入ipconfig/all(或者输入ipconfi ...
- “美登杯”上海市高校大学生程序设计 C. 小花梨判连通 (并查集+map)
Problem C C . 小 花梨 判连通 时间限制:2000ms 空间限制:512MB Description 小花梨给出
- SAP选择屏幕下拉框实现
DATA:vid TYPE vrm_id , "屏幕字段(可以是单个的I/O空间或者是Table Control中的一个单元格) list TYPE vrm_values, value LI ...