1.查看PostgreSQL表结构和数据信息

edbstore=# \d customers
Table "edbstore.customers"
Column | Type | Modifiers
----------------------+-----------------------+----------------------------------------------------------------
customerid | integer | not null default nextval('customers_customerid_seq'::regclass)
firstname | character varying(50) | not null
lastname | character varying(50) | not null
address1 | character varying(50) | not null
address2 | character varying(50) |
city | character varying(50) | not null
state | character varying(50) |
zip | integer |
country | character varying(50) | not null
region | smallint | not null
email | character varying(50) |
phone | character varying(50) |
creditcardtype | integer | not null
creditcard | character varying(50) | not null
creditcardexpiration | character varying(50) | not null
username | character varying(50) | not null
password | character varying(50) | not null
age | smallint |
income | integer |
gender | character varying(1) |
Indexes:
"customers_pkey" PRIMARY KEY, btree (customerid)
"ix_cust_username" UNIQUE, btree (username)
Referenced by:
TABLE "cust_hist" CONSTRAINT "fk_cust_hist_customerid" FOREIGN KEY (customerid) REFERENCES customers(customerid) ON DELETE CASCADE
TABLE "orders" CONSTRAINT "fk_customerid" FOREIGN KEY (customerid) REFERENCES customers(customerid) ON DELETE SET NULL edbstore=# select count(1) from customers;
count
-------
20000
(1 row)

2.利用PostgreSQL的row_to_json函数将表结构导出并保存为json格式

edbstore=# \t
Tuples only is on.
edbstore=# \o customer.json
edbstore=# select row_to_json(r) from customers as r;
edbstore=# \q [postgres@sht-sgmhadoopcm-01 dba]$ ls -lh customer.json
-rw-r--r-- 1 postgres appuser 7.7M Dec 7 22:37 customer.json $ head -1 customer.json
{"customerid":1,"firstname":"VKUUXF","lastname":"ITHOMQJNYX","address1":"4608499546 Dell Way","address2":null,"city":"QSDPAGD","state":"SD","zip":24101,"country":"US","region":1,"email":"ITHOMQJNYX@dell.com","phone":"4608499546","creditcardtype":1,"creditcard":"1979279217775911","creditcardexpiration":"2012/03","username":"user1","password":"password","age":55,"income":100000,"gender":"M"}

此时customer表虽然转储为json格式文件,但是并不能直接导入到elasticsearch,否则会报错如下

$ curl -H "Content-Type: application/json" -XPOST "172.16.101.55:9200/bank/_bulk?pretty&refresh" --data-binary "@customer.json"
{
"error" : {
"root_cause" : [
{
"type" : "illegal_argument_exception",
"reason" : "Malformed action/metadata line [1], expected START_OBJECT or END_OBJECT but found [VALUE_NUMBER]"
}
],
"type" : "illegal_argument_exception",
"reason" : "Malformed action/metadata line [], expected START_OBJECT or END_OBJECT but found [VALUE_NUMBER]"
},
"status" : 400
}

根据文档https://www.elastic.co/guide/en/elasticsearch/reference/current/docs-bulk.html说明,我们的json数据里并未指定每行数据唯一的文档id值

3.为json格式的表数据添加id字段

因为之前我们看到该customer表共有2000行,所以我们需要生成对应的20000个id值,我们借助python实现,新建build_id.py文件,并写入如下内容,看清楚是20001,因为包头不包尾原则,1-20000实际打印出来是1-19999,所以我们写1-20001

for i in range(1,20001):
print('{"index":{"_id":"%s"}}' %i ) 

为该文件添加可执行权限,然后执行即可

$ python build_id.py > build_id.txt

$ head -3 build_id.txt
{"index":{"_id":""}}
{"index":{"_id":""}}
{"index":{"_id":""}}

利用linux “paste"命令,将id文件和表文件合并

$ paste -d'\n' build_id.txt customer.json > customer_new.json

$ head - customer_new.json
{"index":{"_id":""}}
{"customerid":,"firstname":"VKUUXF","lastname":"ITHOMQJNYX","address1":"4608499546 Dell Way","address2":null,"city":"QSDPAGD","state":"SD","zip":,"country":"US","region":,"email":"ITHOMQJNYX@dell.com","phone":"","creditcardtype":,"creditcard":"","creditcardexpiration":"2012/03","username":"user1","password":"password","age":,"income":,"gender":"M"}
{"index":{"_id":""}}
{"customerid":,"firstname":"HQNMZH","lastname":"UNUKXHJVXB","address1":"5119315633 Dell Way","address2":null,"city":"YNCERXJ","state":"AZ","zip":,"country":"US","region":,"email":"UNUKXHJVXB@dell.com","phone":"","creditcardtype":,"creditcard":"","creditcardexpiration":"2012/11","username":"user2","password":"password","age":,"income":,"gender":"M"}

4.此时处理过的json格式的表文件就可以正常导入到elasticsearch中了,测试

$ curl -H "Content-Type: application/json" -XPOST "172.16.101.55:9200/customer/_bulk?pretty&refresh" --data-binary "@customer_new.json"
$ curl http://172.16.101.55:9200/_cat/indices?v
health status index uuid pri rep docs.count docs.deleted store.size pri.store.size
yellow open customer DvLoM7NjSYyjTwD5BSkK3A 10mb 10mb

将PostgreSQL数据库的表导入到elasticsearch中的更多相关文章

  1. 使用Logstash把MySQL数据导入到Elasticsearch中

    总结:这种适合把已有的MySQL数据导入到Elasticsearch中 有一个csv文件,把里面的数据通过Navicat Premium 软件导入到数据表中,共有998条数据 文件下载地址:https ...

  2. oracle 表导入到powerDesigner 中

    最近不忙,之前一直是用powerDesigner看表结构,还没自己导入过,今天试试 oracle 表导入到powerDesigner 中步骤: 1.File--->reverse Enginne ...

  3. Logstash:把MySQL数据导入到Elasticsearch中

    Logstash:把MySQL数据导入到Elasticsearch中 前提条件 需要安装好Elasticsearch及Kibana. MySQL安装 根据不同的操作系统我们分别对MySQL进行安装.我 ...

  4. sqoop将关系型的数据库得数据导入到hbase中

    1.sqoop将关系数据库导入到hbase的参数说明

  5. Logstash:解析 JSON 文件并导入到 Elasticsearch 中

    转载自:https://elasticstack.blog.csdn.net/article/details/114383426 在今天的文章中,我们将详述如何使用 Logstash 来解析 JSON ...

  6. sqoop将关系型数据库的表导入hive中

    1.sqoop 将关系型数据库的数据导入hive的参数说明:

  7. pg_dumpall - 抽出一个 PostgreSQL 数据库集群到脚本文件中

    SYNOPSIS pg_dumpall [ option...] DESCRIPTION 描述 pg_dumpall 是一个用于写出("转储")一个数据库集群里的所有 Postgr ...

  8. 将Mongodb的表导入到Hive中

    1.官方文档:https://docs.mongodb.com/ecosystem/tools/hadoop/ 2.Hive介绍: Hive特点: 1.hive是一个数据仓库,和oracle,mysq ...

  9. 如何将数据库中的表导入到PowerDesigner中

    1.        打开PowerDesigner12,在菜单中按照如下方式进行操作file->Reverse Engineer->DataBase 点击后,弹出 New Physical ...

随机推荐

  1. HTML5上传超大文件解决方案

    一.概述 所谓断点续传,其实只是指下载,也就是要从文件已经下载的地方开始继续下载.在以前版本的HTTP协议是不支持断点的,HTTP/1.1开始就支持了.一般断点下载时才用到Range和Content- ...

  2. FZU 2231 平行四边形数

    FZU - 2231  平行四边形数 题目大意:给你n个点,求能够组成多少个平行四边形? 首先想到的是判断两对边平行且相等,但这样的话得枚举四个顶点,或者把点转换成边然后再枚举所有边相等的麻烦,还不好 ...

  3. vim8.1安装

    win下直接就有gvim8.1.exe安装.但linux下直接从apt-get里面下载的vim都是远古版本,需要手动编译安装. 首先,下载vim源代码 git clone https://github ...

  4. AcWing:167. 木棒(dfs + 剪枝)

    乔治拿来一组等长的木棒,将它们随机地砍断,使得每一节木棍的长度都不超过50个长度单位. 然后他又想把这些木棍恢复到为裁截前的状态,但忘记了初始时有多少木棒以及木棒的初始长度. 请你设计一个程序,帮助乔 ...

  5. ast.literal_eval(转)

    eval函数在Python中做数据类型的转换还是很有用的.它的作用就是把数据还原成它本身或者是能够转化成的数据类型.那么eval和ast.literal_val()的区别是什么呢?本文将大家介绍关于P ...

  6. Visual Studio Code 编辑器使用

      image.png 之前一直都是用 sublime text 作为开发工具,用久了自然而然会觉得生活无趣,而且当时用sublime text 装了很多插件,有些插件不能用,于是决定试试微软的新产品 ...

  7. koa 基础(十六)koa 中 session 的使用

    1.app.js /** * koa 中 session 的使用 * 1.npm install koa-session --save * 2.const session = require('koa ...

  8. OSI的七层模型和TCP/IP的五层模型

    OSI七层模型: 应用层->表示层->会话层->传输层->网络层->数据链路层->物理层 TCP/IP五层模型: 应用层->传输层->网络层->数 ...

  9. leetcode-hard-array- 227. Basic Calculator II

    mycode  29.58% class Solution(object): def calculate(self, s): """ :type s: str :rtyp ...

  10. 网络通信框架之volley

    介绍 我们平时在开发Android应用的时候不可避免地都需要用到网络技术,而多数情况下应用程序都会使用HTTP协议来发送和接收网络数据.Android系统中主要提供了两种方式来进行HTTP通信,Htt ...