传送门

注意到连续两个格子如果有相同颜色那么一路过去的都可以确定

比如一开始染了这两个位置:

然后发现后面整片过去都可以确定:

对于横着的情况也是一样,然后就会发现不可能出现横着两个和竖着两个同时都有的情况,因为这样一定会冲突,就一定不合法了

(自己画一下就知道了)

那么现在只要对行列分别计算即可,直接设 $f[i][0/1][0/1]$ 表示前 $i$ 个位置,当前位置为 $0/1$ 上一个位置为 $0/1$ 时的方案数

那么转移十分显然,然后答案就是行任意放的方案 $\sum_{i=0}^{1}\sum_{j=0}^{1}f[n][i][j]$ 加上列任意放的方案 $\sum_{i=0}^{1}\sum_{j=0}^{1}f[m][i][j]$ 减 $2$

减 $2$ 是因为黑白染色情况下的方案会被行和列都算到,要减去多算的次数

然后就可以过了,但是事实上如果直接设 $g[i]=\sum_{i=0}^{1}\sum_{j=0}^{1}f[n][i][j]$ ,然后分析原本 $f$ 的方程,那么你会发现 $g[i]$ 恰好等于 $g[i-1]+g[i-2]$

#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstring>
#include<cmath>
using namespace std;
typedef long long ll;
inline int read()
{
int x=,f=; char ch=getchar();
while(ch<''||ch>'') { if(ch=='-') f=-; ch=getchar(); }
while(ch>=''&&ch<='') { x=(x<<)+(x<<)+(ch^); ch=getchar(); }
return x*f;
}
const int N=2e5+,mo=1e9+;
inline int fk(int x) { return x>=mo ? x-mo : x; }
int n,m,f[N][][];
int main()
{
n=read(),m=read(); int mx=max(n,m);
if(n==&&m==) { printf("2\n"); return ; }
f[][][]=f[][][]=f[][][]=f[][][]=;
for(int i=;i<=mx;i++)
{
f[i][][]=f[i-][][];
f[i][][]=fk(f[i-][][]+f[i-][][]);
f[i][][]=fk(f[i-][][]+f[i-][][]);
f[i][][]=f[i-][][];
}
if(n>m) swap(n,m);
if(n==) { printf("%d\n", fk(fk(f[m][][]+f[m][][]) + fk(f[m][][]+f[m][][])) ); return ; }
int ans=fk(fk(f[m][][]+f[m][][]) + fk(f[m][][]+f[m][][]));
ans=fk(ans-+mo);
ans=fk(ans+ fk(fk(f[n][][]+f[n][][]) + fk(f[n][][]+f[n][][])));
printf("%d\n",ans);
}

Codeforces 1239A. Ivan the Fool and the Probability Theory的更多相关文章

  1. Codeforces 1248C Ivan the Fool and the Probability Theory(推公式)

    题意 一个n*m的网格图,每个格子可以染黑色.白色,问你每个格子最多有一个相邻颜色相同的方案数 n,m<=1e5 思路 我们先处理\(1 \times m\)的情况 设\(f[i][j]\)为前 ...

  2. Codeforces Round #594 (Div. 1) A. Ivan the Fool and the Probability Theory 动态规划

    A. Ivan the Fool and the Probability Theory Recently Ivan the Fool decided to become smarter and stu ...

  3. Codeforces Round #594 (Div. 2) - C. Ivan the Fool and the Probability Theory(思维)

    题意:给n*m的网格涂黑白两种颜色,保证每个格子上下左右的四个格子中最多只有一个格子与自己颜色相同,问有多少种涂法?结果$mod1000000007$ 思路:先只考虑一行有多少种涂法 $dp[i][0 ...

  4. Codeforces Round #594 (Div. 1) Ivan the Fool and the Probability Theory

    题意:给你一个NxM的图,让你求有多少符合 “一个格子最多只有一个同颜色邻居”的图? 题解:首先我们可以分析一维,很容易就可以知道这是一个斐波那契计数 因为dp[1][m]可以是dp[1][m-1]添 ...

  5. Codeforces Round #594 (Div. 2) C. Ivan the Fool and the Probability Theory (思维,递推)

    题意:给你一个\(n\)x\(m\)的矩阵,需要在这些矩阵中涂色,每个格子可以涂成黑色或者白色,一个格子四周最多只能有\(2\)个和它颜色相同的,问最多有多少种涂色方案. 题解:首先我们考虑一维的情况 ...

  6. CF1239A Ivan the Fool and the Probability Theory

    思路: 可以转化为“strip”(http://tech-queries.blogspot.com/2011/07/fit-12-dominos-in-2n-strip.html)问题.参考了http ...

  7. CF C.Ivan the Fool and the Probability Theory【思维·构造】

    题目传送门 题目大意: 一个$n*m$的网格图,每个格子可以染黑色.白色,问每个格子最多有一个相邻格子颜色相同的涂色方案数$n,m<=1e5$ 分析: 首先,考虑到如果有两个相邻的格子颜色相同, ...

  8. C - Ivan the Fool and the Probability Theory---div2

    题目连接:https://codeforces.com/contest/1248/problem/C 思路: 注意上下两排的关系,如果说上面那一排有两个方格连续,那么他相邻的两排必定和他相反,如果说当 ...

  9. CodeForces 1100F Ivan and Burgers

    CodeForces题面 Time limit 3000 ms Memory limit 262144 kB Source Codeforces Round #532 (Div. 2) Tags da ...

随机推荐

  1. [JZOJ6345]:ZYB建围墙(数学+构造)

    题目描述 $ZYB$之国是特殊的六边形构造. 已知王国一共有$N$户家庭,每个家庭需占据一个不同的六边形格子. 王国里交流很频繁,所以这些家庭要构成一个连通区域:同时出于安全考虑,国王$ZYB$想在外 ...

  2. mysql 查看当前正在执行的语句

    查看当前正在执行的语句 show processlist:show processlist; 结束正在执行的语句进程 kill 进程id

  3. 新版iTunes connect上传iOS应用

    http://www.brianjcoleman.com/tutorial-distribute-apps-using-new-itunes-connect/ Recently Apple updat ...

  4. 【零基础】斯坦福四足机器人DIY指引

    可以后空翻的机器狗 近日斯坦福开源了一个四足机器人项目“Stanford Doggo”,“只需”3000美金就可以DIY一个能跳一米高兼后空翻的电子小狗,一段时间研究后我们写了这篇简单的指引帮助大家快 ...

  5. LeetCode 20. 有效的括号(Valid Parentheses )

    题目描述 给定一个只包括 '(',')','{','}','[',']' 的字符串,判断字符串是否有效. 有效字符串需满足: 左括号必须用相同类型的右括号闭合. 左括号必须以正确的顺序闭合. 注意空字 ...

  6. python查找鞍点

    问题:对于给定5X5的整数矩阵,设计算法查找出所有的鞍点的信息(包括鞍点的值和行.列坐标,坐标从1开始). 提示:鞍点的特点:列上最小,行上最大. 思路:求出每一行的最大值,将行号.列号.值存入列表中 ...

  7. LC 970. Powerful Integers

    Given two non-negative integers x and y, an integer is powerful if it is equal to x^i + y^j for some ...

  8. 计算机组成原理 — FPGA 现场可编程门阵列

    目录 文章目录 目录 FPGA FPGA 的应用场景 FPGA 的技术难点 FPGA 的工作原理 FPGA 的体系结构 FPGA 的开发 FPGA 的使用 FPGA 的优缺点 参考文档 FPGA FP ...

  9. Jmeter使用实践-接口diff测试

    Jmeter使用实践-接口diff测试 大多数人都使用 Jmeter 做过性能测试,但是在使用的过程中你会发现,它不仅可以做性能测试和功能测试,还能够满足基本的接口测试需求. 相比其他工具,Jmete ...

  10. Java集合(4):未获支持的操作及UnsupportedOperationException

    执行各种添加和移除的方法在Collection中都是可选操作的,这意味着实现类并不需要为这些方法提供实现.当我们调用这些方法时,将不会执行有意义的行为,而是通常抛出UnsupportedOperati ...