【线性代数】3-4:方程组的完整解( $Ax=b$ )
title: 【线性代数】3-4:方程组的完整解( Ax=bAx=bAx=b )
categories:
- Mathematic
- Linear Algebra
keywords: - Ax=b
- Special Solution
- Full Column Rank
- Full Row Rank
- Complete Solution
toc: true
date: 2017-09-25 15:20:42
Abstract: Ax=b的完整解,以及一个解,infinity个解,没有解的所有条件和说明
Keywords: Ax=b,Special Solution,Full Column Rank,Full Row Rank,Complete Solution
开篇废话
废话没啥好说的,成长总要经历痛苦,只有不断的让自己痛苦才能不断的提升能力,逐渐掌握自己的命运,一直生活在安逸快乐中是个好事,但有一天命运一旦降临将束手无措,也许一辈子的辛苦努力就是为了逃过某次致命一击,用一生的辛苦来扼住命运的喉咙,不也是精彩的一生么?别抱怨社会,别抱怨政府,也别抱怨不公平,如果认定不公平,那为什么不是获利一方?如果说自己的父亲不给力,那你有一天也是别人的父亲,原始财富一定要有人积累,这也对家族的责任。
Ax=bAx=bAx=b
之前我们已经研究了 Ax=0Ax=0Ax=0的相关内容,值得说一下的是,列空间和nullspace是有些区别的,列空间指的是b所在的空间,而nullspace是x所在的空间,这个要区别一下,这些所有空间都是针对矩阵的。
One Particular Solution
本文为节选,完整内容地址:https://www.face2ai.com/Math-Linear-Algebra-Chapter-3-4转载请标明出处
【线性代数】3-4:方程组的完整解( $Ax=b$ )的更多相关文章
- [物理学与PDEs]第5章第6节 弹性静力学方程组的定解问题
5. 6 弹性静力学方程组的定解问题 5. 6. 1 线性弹性静力学方程组 1. 线性弹性静力学方程组 $$\bee\label{5_6_1_le} -\sum_{j,k,l}a_{ijkl}\cf ...
- MIT线性代数:1.方程组的几何解析
- 线性代数笔记10——矩阵的LU分解
在线性代数中, LU分解(LU Decomposition)是矩阵分解的一种,可以将一个矩阵分解为一个单位下三角矩阵和一个上三角矩阵的乘积(有时是它们和一个置换矩阵的乘积).LU分解主要应用在数值分析 ...
- Linear Algebra lecture1 note
Professor: Gilbert Strang Text: Introduction to Linear Algebra http://web.mit.edu/18.06 Lecture 1 ...
- [物理学与PDEs]第5章 弹性力学
[物理学与PDEs]第5章第1节 引言 [物理学与PDEs]第5章第2节 变形的描述, 应变张量 2.1 变形梯度张量 [物理学与PDEs]第5章第2节 变形的描述, 应变张量 2.2 Cauchy ...
- MIT-线性代数笔记(1-6)
学习目录 第 01 讲 行图像和列图像 第 02 讲 矩阵消元 第 03 讲 矩阵的乘法和逆矩阵 第 04 讲 矩阵的LU 分解 第 05 讲 转置.置换和空间 第 06 讲 列空间和零空间 第 07 ...
- 范数(norm) 几种范数的简单介绍
原文地址:https://blog.csdn.net/a493823882/article/details/80569888 我们知道距离的定义是一个宽泛的概念,只要满足非负.自反.三角不等式就可以称 ...
- 【线性代数】2-1:解方程组(Ax=b)
title: [线性代数]2-1:解方程组(Ax=b) toc: true categories: Mathematic Linear Algebra date: 2017-08-31 15:08:3 ...
- 线性代数:Ax=b的解
n列的矩阵A,当且仅当向量b是列空间C(A)的一个向量时,Ax=b有解. C(A)的零空间是N(A),N(A)正交补是A的行空间C(T(A)), 依据上一章的结论,任何Rn向量可以表示为r+n,其中n ...
随机推荐
- PHP学习之PHP trait解析
自PHP5.4.0起,PHP实现了一种代码复用的方法,称为trait. 众所周知,PHP中是单继承的,trait是为类似PHP的单继承语言而准备得一种代码复用机制.trait为了减少单继承语言的限制, ...
- day04_XPATH提取数据
1.XML简介 1.1.定义 可扩展标记语言(EXtensible Markup Language) 1.2.特点 一种标记语言,很类似 HTML XML 的标签需要我们自行定义 被设计为具有自我 ...
- 9.ssh登录慢
修改方式:使用root权限修改ssh的配置文件,vim /etc/ssh/sshd_config增加一行记录:UseDNS no修改GSSAPIAuthentication参数为 no,默认是yesP ...
- Vue路由传参及传参后刷新导致参数消失处理
项目功能需要,要从列表页跳转到第三方提供的URL上(这里第三方页面我是通过iframe引入在详情页,目的是点击返回时可以通过keepAlive让列表页不刷新,如果不通过iframe直接跳第三方链接,那 ...
- 关键字:for_each
std::for_each 先贴cppreference中对for_each的概述: template< class InputIt, class UnaryFunction > //此处 ...
- NET如何使用ELinq-实现增删改查
1 通过对ELinq主页的参考和学习,以及在项目中(wpf项目中用到的)中应用,ORM框架中的ELinq确实非常的强大,特此以建立wpf项目为例子来总结下如何在项目中应用ELinq,要想使用这个框架首 ...
- 销售订单(SO)-API-更新销售订单
更新销售订单和创建销售订单差不多,调用的API相同,只是传入的时候标识不一样:operation := oe_globals.g_opr_update 示例代码如下: PROCEDURE update ...
- java引用传递,值传递
2个interger的引用对象传给一个swap方法在方法内部进行交换 1.1 java中方法参数传值方式 java中方法传参数都是值传递的,只不过根据参数的类型是引用类型还是非引用类型 引用类型传递的 ...
- Django 开发相关知识 整理
前言 前端ajax HTTP请求头 ajax上传文件 jsonp跨域 URL 设计 分发 url参数编码 反向生成url 视图 request对象 POST url信息 视图返回值 HttpRespo ...
- Derby 数据库 客户端 ij使用
Derby是开源的.嵌入式的Java数据库程序,ij是Derby提供的客户端工具,相当于其他数据库提供的sqlplus工具. ij是纯Java的程序,不用安装,使用起来就像运行普通的Java应用程序一 ...