title: 【线性代数】3-4:方程组的完整解( Ax=bAx=bAx=b )

categories:

  • Mathematic
  • Linear Algebra

    keywords:
  • Ax=b
  • Special Solution
  • Full Column Rank
  • Full Row Rank
  • Complete Solution

    toc: true

    date: 2017-09-25 15:20:42

Abstract: Ax=b的完整解,以及一个解,infinity个解,没有解的所有条件和说明

Keywords: Ax=b,Special Solution,Full Column Rank,Full Row Rank,Complete Solution

开篇废话

废话没啥好说的,成长总要经历痛苦,只有不断的让自己痛苦才能不断的提升能力,逐渐掌握自己的命运,一直生活在安逸快乐中是个好事,但有一天命运一旦降临将束手无措,也许一辈子的辛苦努力就是为了逃过某次致命一击,用一生的辛苦来扼住命运的喉咙,不也是精彩的一生么?别抱怨社会,别抱怨政府,也别抱怨不公平,如果认定不公平,那为什么不是获利一方?如果说自己的父亲不给力,那你有一天也是别人的父亲,原始财富一定要有人积累,这也对家族的责任。

Ax=bAx=bAx=b

之前我们已经研究了 Ax=0Ax=0Ax=0的相关内容,值得说一下的是,列空间和nullspace是有些区别的,列空间指的是b所在的空间,而nullspace是x所在的空间,这个要区别一下,这些所有空间都是针对矩阵的。

One Particular Solution

本文为节选,完整内容地址:https://www.face2ai.com/Math-Linear-Algebra-Chapter-3-4转载请标明出处

【线性代数】3-4:方程组的完整解( $Ax=b$ )的更多相关文章

  1. [物理学与PDEs]第5章第6节 弹性静力学方程组的定解问题

    5. 6 弹性静力学方程组的定解问题 5. 6. 1 线性弹性静力学方程组 1.  线性弹性静力学方程组 $$\bee\label{5_6_1_le} -\sum_{j,k,l}a_{ijkl}\cf ...

  2. MIT线性代数:1.方程组的几何解析

  3. 线性代数笔记10——矩阵的LU分解

    在线性代数中, LU分解(LU Decomposition)是矩阵分解的一种,可以将一个矩阵分解为一个单位下三角矩阵和一个上三角矩阵的乘积(有时是它们和一个置换矩阵的乘积).LU分解主要应用在数值分析 ...

  4. Linear Algebra lecture1 note

    Professor: Gilbert Strang Text: Introduction to Linear Algebra http://web.mit.edu/18.06   Lecture 1 ...

  5. [物理学与PDEs]第5章 弹性力学

    [物理学与PDEs]第5章第1节 引言 [物理学与PDEs]第5章第2节 变形的描述, 应变张量 2.1 变形梯度张量 [物理学与PDEs]第5章第2节 变形的描述, 应变张量 2.2 Cauchy ...

  6. MIT-线性代数笔记(1-6)

    学习目录 第 01 讲 行图像和列图像 第 02 讲 矩阵消元 第 03 讲 矩阵的乘法和逆矩阵 第 04 讲 矩阵的LU 分解 第 05 讲 转置.置换和空间 第 06 讲 列空间和零空间 第 07 ...

  7. 范数(norm) 几种范数的简单介绍

    原文地址:https://blog.csdn.net/a493823882/article/details/80569888 我们知道距离的定义是一个宽泛的概念,只要满足非负.自反.三角不等式就可以称 ...

  8. 【线性代数】2-1:解方程组(Ax=b)

    title: [线性代数]2-1:解方程组(Ax=b) toc: true categories: Mathematic Linear Algebra date: 2017-08-31 15:08:3 ...

  9. 线性代数:Ax=b的解

    n列的矩阵A,当且仅当向量b是列空间C(A)的一个向量时,Ax=b有解. C(A)的零空间是N(A),N(A)正交补是A的行空间C(T(A)), 依据上一章的结论,任何Rn向量可以表示为r+n,其中n ...

随机推荐

  1. Linux 多命令语句与重定向

    多命令语句 Linux中我们在shell输入命令一般是一条一条执行,但是我们同样可以用一行语句写出多命令,下面就举出几个常见的方法 “;”分号用法 方式:command1 ; command2 用;号 ...

  2. 第十四章 ZYNQ TIMER定时器中断

      上篇文章实现了了PS接受来自PL的中断,本片文章将在ZYNQ的纯PS里实现私有定时器中断.每隔一秒中断一次,在中断函数里计数加1,通过串口打印输出. 本文所使用的开发板是Miz702 PC 开发环 ...

  3. 彭博社:博通正在与赛门铁克洽谈收购事宜(博通能买得起 又能讲故事的 没几个了 为了刺激资本的兴趣 只能瞎搞 就和intel 收购 麦咖啡一样。就像杜蕾斯收购美赞臣一样,也许只是纯粹的商业行为,哪行赚钱干哪行)

    彭博社今日消息,知名芯片制造商 Broadcom 公司正在就收购网络安全公司 Symantec 事宜进行高级会谈,因为 Broadcom 希望寻找半导体业务之外的机会,以实现多元化经营. 据称,在彭博 ...

  4. 怎样终止HTTP请求

    使用 xhr.abort() var xhr = new XMLHttpRequest(); xhr.open('GET', 'http://www.example.com/page.php', tr ...

  5. 01 Java 内存分配全面浅析

    http://blog.csdn.net/shimiso/article/details/8595564 Java 内存分配全面浅析  本文将由浅入深详细介绍Java内存分配的原理,以帮助新手更轻松的 ...

  6. 作业1:java虚拟机内存模型图示

    看了很多篇文章,整理成一幅图,但仍然有许多不解的地方,以后再接着完善,哪位大神看到不正确的地方,请指出,谢谢.

  7. Java装饰者模式(思维导图)

    图1 装饰者模式[点击查看图片] 1,一个简单的以人为主体的装饰者模式 被装饰者 public interface Human {//被装饰者 public void wearClothes(); p ...

  8. python 画正态曲线

    import numpy as np import matplotlib.pyplot as plt import math # Python实现正态分布 # 绘制正态分布概率密度函数 u = 0 # ...

  9. 远程连接windows2003桌面无法使用剪切板的有效解决方法

    远程桌面控制服务器时,无法剪切.粘贴一些东西,上网搜了一下,原来是rdpclip.exe(remote desktop clipboard)不起作用了.此程序负责管理本地机与远程服务器之间共享剪切板, ...

  10. TCP面向字节流和UDP面向报文的区别

    TCP面向字节流 打个比方比喻TCP,你家里有个蓄水池,你可以里面倒水,蓄水池上有个龙头,你可以通过龙头将水池里的水放出来,然后用各种各样的容器装(杯子.矿泉水瓶.锅碗瓢盆)接水. 上面的例子中,往水 ...