考虑如果没有个数的限制,那么就是一个完全背包,所以先跑一个完全背包,求出没有个数限制的方案数即可。

因为有个数的限制,所以容斥一下:没有1个超过限制的方案=至少0个超过限制-至少1个超过限制+至少2个超过限制-至少3个超过限制+至少4个超过限制

如何求上面的方案数?有限制时,把$c[i]$这个硬币取了超过$d[i]$次是不应该有贡献的,那么我们先取出$d[i]+1$个价值为$c[i]$的硬币,然后剩下的就是$f[sum-c[i]*(d[i]+1)]$,这就是我们所不需要的答案, 把它按容斥的思路搞掉就行了。

#include<cstdio>
#include<iostream>
#include<algorithm>
#include<cstring>
#include<cmath>
#include<cctype>
#include<cstdlib>
#include<vector>
#include<map>
#include<set>
#define ll long long
#define R register int
static char B[<<],*S=B,*D=B;
#define getchar() (S==D&&(D=(S=B)+fread(B,1,1<<15,stdin))?EOF:*S++)
using namespace std;
inline int g() {
R ret=,fix=; register char ch; while(!isdigit(ch=getchar())) fix=ch=='-'?-:fix;
do ret=ret*+(ch^); while(isdigit(ch=getchar())); return ret*fix;
}
const int N=;
int n,tot;
int c[],d[];
ll f[N+];
signed main() {
for(R i=;i<=;++i) c[i]=g(); tot=g(); f[]=;
for(R i=;i<=;++i) for(R j=c[i];j<=N;++j) f[j]+=f[j-c[i]];
while(tot--) {
for(R i=;i<=;++i) d[i]=g(); register ll sum=g(),ans=;
for(R i=;i<=;++i) { R cnt=; register ll t=sum;
for(R j=;j<=;++j) if(i&(<<(j-))) t-=c[j]*(d[j]+),cnt^=;
if(t<) continue; cnt?ans-=f[t]:ans+=f[t];
} printf("%lld\n",ans);
}
}

2019.06.02

Luogu P1450 [HAOI2008]硬币购物 背包+容斥原理的更多相关文章

  1. [Luogu P1450] [HAOI2008]硬币购物 背包DP+容斥

    题面 传送门:https://www.luogu.org/problemnew/show/P1450 Solution 这是一道很有意思的在背包里面做容斥的题目. 首先,我们可以很轻松地想到暴力做背包 ...

  2. 洛谷P1450 [HAOI2008]硬币购物 背包+容斥

    无限背包+容斥? 观察数据范围,可重背包无法通过,假设没有数量限制,利用用无限背包 进行预处理,因为实际硬币数有限,考虑减掉多加的部分 如何减?利用容斥原理,减掉不符合第一枚硬币数的,第二枚,依次类推 ...

  3. Luogu P1450 [HAOI2008]硬币购物

    题目 一个很自然的想法是容斥. 假如只有一种硬币,那么答案就是没有限制的情况下买\(s\)的方案数减去强制用了\(d+1\)枚情况下买\(s\)的方案数即没有限制的情况下买\(s-c(d+1)\)的方 ...

  4. BZOJ_1042_[HAOI2008]硬币购物_容斥原理+背包

    BZOJ_1042_[HAOI2008]硬币购物_容斥原理+背包 题意: 硬币购物一共有4种硬币.面值分别为c1,c2,c3,c4.某人去商店买东西,去了tot次.每次带di枚ci硬币,买s i的价值 ...

  5. P1450 [HAOI2008]硬币购物(完全背包+容斥)

    P1450 [HAOI2008]硬币购物 暴力做法:每次询问跑一遍多重背包. 考虑正解 其实每次跑多重背包都有一部分是被重复算的,浪费了大量时间 考虑先做一遍完全背包 算出$f[i]$表示买价值$i$ ...

  6. 洛谷—— P1450 [HAOI2008]硬币购物

    P1450 [HAOI2008]硬币购物 硬币购物一共有$4$种硬币.面值分别为$c1,c2,c3,c4$.某人去商店买东西,去了$tot$次.每次带$di$枚$ci$硬币,买$si$的价值的东西.请 ...

  7. 2021.12.06 P1450 [HAOI2008]硬币购物(组合数学+抽屉原理+DP)

    2021.12.06 P1450 [HAOI2008]硬币购物(组合数学+抽屉原理+DP) https://www.luogu.com.cn/problem/P1450 题意: 共有 44 种硬币.面 ...

  8. BZOJ 1042: [HAOI2008]硬币购物( 背包dp + 容斥原理 )

    先按完全背包做一次dp, dp(x)表示x元的东西有多少种方案, 然后再容斥一下. ---------------------------------------------------------- ...

  9. bzoj 1042: [HAOI2008]硬币购物 dp+容斥原理

    题目链接 1042: [HAOI2008]硬币购物 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 1706  Solved: 985[Submit][ ...

随机推荐

  1. 什么是SSL证书服务?

    SSL证书服务(Alibaba Cloud SSL Certificates Service)由阿里云联合多家国内外数字证书管理和颁发的权威机构.在阿里云平台上直接提供的服务器数字证书.您可以在阿里云 ...

  2. jupyter lab 的基本使用

    在创建一个文件即可 进入创建的文件,在创建一个ipynb文件即可操作 注意右上角必须是python3 可以哦(如果点了shutdown 就会没有内核 需要自己在定义python编辑器) jupyter ...

  3. pt-table-checksum和pt-table-sync使用

    pt-table-checksum和pt-table-sync使用 数据库版本:5.6.25 pt工具版本:2.2.14 主从关系一:不同机器同一端口 10.10.228.163:4306(rescs ...

  4. CF网络流练习

    1. 103E 大意: 给定$n$个集合, 满足对于任意的$k$, 任意$k$个集合的并集都不少于$k$. 要求选出$k$个集合$(k> 0)$, 使得并恰好等于$k$, 输出最少花费. Hal ...

  5. SQLException: #22001你知道这个错误码吗

    做一个积极的人 编码.改bug.提升自己 我有一个乐园,面向编程,春暖花开! java.sql.SQLException: #22001 java.sql.SQLException: #22001 a ...

  6. 怎么处理sqlserver2017部署在winowsDocker上时区无法修改成功的方式,并且可以多创建新的容器调用简单的方式直接使用!

    在创建该容器的时候我们执行的语句中添加了一个 从图中所看到的内容,上海时区,按照正常流程一般都是可疑正常执行的,但最后事情并不是我们所想的那么简单. 我们进入对应的容器里面 ,执行语句之后查找对应的文 ...

  7. C# list to dictionary

    示例: 新建一个类: public class Lang { public string En; public string Ch; } 实例化并转为字典: List<Lang> lang ...

  8. HTTP中GET,POST和PUT的区别

    一.HTTP中定义了以下几种请求方法: 1.GET:2.POST:3.PUT:4.DELETE;5.HEAD:6.TRACE:7.OPTIONS: 二.各个方法介绍: 1.GET方法:对这个资源的查操 ...

  9. 如何查找SAP Fiori launchpad Designer的准确路径即url地址

    比如我们知道在SPRO里下面这个路径的customizing activity里打开Fiori Launchpad designer: SAP Netweaver->UI technologie ...

  10. MySQL跨表更新SQL

    1 sql范式  把s表中的city_name的值设置为city表中的name,关联条件是city_code 和 code update student s, city c set s.city_na ...