LSTM是RNN的一种算法, 在序列分类中比较有用。常用于语音识别,文字处理(NLP)等领域。

等同于VGG等CNN模型在在图像识别领域的位置。  本篇文章是叙述LSTM 在MNIST 手写图中的使用。

用来给初步学习RNN的一个范例,便于学习和理解LSTM .

先把工作流程图贴一下

代码片段

数据准备

def makedata():
img_rows, img_cols = 28, 28 mnist = fetch_mldata("MNIST original")
# rescale the data, use the traditional train/test split
X_1D, y_int = mnist.data / 255., mnist.target
y = np_utils.to_categorical(y_int, num_classes=10) X = X_1D.reshape(X_1D.shape[0], img_rows, img_cols ) input_shape = (img_rows, img_cols, 1)
x_train, x_test = X[:60000], X[60000:]
y_train, y_test = y[:60000], y[60000:] return X, y
pass

下载 MNIST数据, 进行归一化  mnist.data / 255, 把数据[7000,784 ] 转成[ 70000,28,28]

构建模型:

def buildlstm():

    import numpy as np

    data_dim = 28
timesteps = 28
num_classes = 10 # expected input data shape: (batch_size, timesteps, data_dim)
model = Sequential()
model.add(LSTM(32, return_sequences=True, input_shape=(timesteps, data_dim+14)))
model.add(LSTM(32, return_sequences=True))
model.add(LSTM(32))
model.add(Dense(10, activation='softmax')) model.compile(loss='categorical_crossentropy',
optimizer='rmsprop',
metrics=['accuracy'])
print model.summary()
return model
pass

基础参数: data_dim, timesteps, num_classes   分别为 28,28, 10
网络层级 :    LSTM ----》LSTM ----》LSTM ----》Dense
注意点: input_shape=(timesteps, data_dim+14))   此处 应该为  data_dim , data_dim+14是我做第二个试验使用。
网络理解: RNN是用前一部分数据对当前数据的影响,并共同作用于最后结果。 用基础的深度神经网络(只有Dense层),是把MNIST一个图形,
提取成784个像素数据,把784个数据扔给神经网络,784个数据是同等的概念。 训练出权重来确定最终的分类值。

RNN 之于MNIST, 是把MNIST 分成 28x28 数据。可以理解为用一个激光扫描一个图片,扫成28个(行)数据, 每行为28个像素。 站在时间序列
的角度,其实图片没有序列概念。但是我们可以这样理解, 每一行于下一行是有位置关系的,不能进行顺序变化。 比如一个手写 “7”字, 如果把28行
的上下行顺序打乱, 那么7 上面的一横就可能在中间位置,也可能在下面的位置。  这样,最终的结果就不应该是 7 .  
所以MNIST 的 28x28可以理解为 有时序关系的数据。

训练预测:

def runTrain(model, x_train, x_test, y_train, y_test):
model.fit(x_train, y_train, batch_size= nbatch_size, epochs= nEpoches)
score = model.evaluate(x_test, y_test, batch_size=nbatch_size)
print 'evaluate score:', score
pass

这部分应该没什么好说的

主程序:

def test():

    X,y = makedata2()
x_train, x_test = X[:60000], X[60000:]
y_train, y_test = y[:60000], y[60000:]
model = buildlstm()
runTrain(model, x_train, x_test, y_train, y_test )
pass

运行结果

结构:
Layer (type) Output Shape Param #
=================================================================
lstm_1 (LSTM) (None, 28, 32) 7808
_________________________________________________________________
lstm_2 (LSTM) (None, 28, 32) 8320
_________________________________________________________________
lstm_3 (LSTM) (None, 32) 8320
_________________________________________________________________
dense_1 (Dense) (None, 10) 330
=================================================================
Total params: 24,778
Trainable params: 24,778
Non-trainable params: 0
_________________________________________________________________ 结果:
base lstm for mnist
acc : 98.56% 结果2:
把数据最后增加 50% 的 0 , (dim X 0.5)
acc : 98.39%
结果基本上 与原数据一致

该实验证明两个结论:
1.  LSTM可用于图形识别
2.  在数据中 每行28个基础像素后面 + 14 个空白(0)的元素,不影分类识别。

写在最后:  本实验的目的是为了理解RNN(LSTM),  只有理解了才能很好的使用。 本文章的目的是为记录和分享。
再说下 RNN在其它领域的应用。  比如在语音识别领域,一个音谱,识别成一个单词(词语),可以理解成一个
竖向扫描的MNIST ,   一个股票的K线图,也可以理解一个竖向扫描的MNIST。  还有其它领域,可以归纳递推。 
入门之后, 如何在自己的领域,再深入(构建复杂模型,优化数据的处理),提高网络模型的识别准确,那需要
见仁见智的。

代码文件链接:

源码下载

有对 金融程序化 和 深度学习结合有兴趣的可以加群 , 个人群: 杭州程序化交易群  375129936

用LSTM分类 MNIST的更多相关文章

  1. NLP用CNN分类Mnist,提取出来的特征训练SVM及Keras的使用(demo)

    用CNN分类Mnist http://www.bubuko.com/infodetail-777299.html /DeepLearning Tutorials/keras_usage 提取出来的特征 ...

  2. tensorflow学习笔记————分类MNIST数据集

    在使用tensorflow分类MNIST数据集中,最容易遇到的问题是下载MNIST样本的问题. 一般是通过使用tensorflow内置的函数进行下载和加载, from tensorflow.examp ...

  3. 【转载】用Scikit-Learn构建K-近邻算法,分类MNIST数据集

    原帖地址:https://www.jiqizhixin.com/articles/2018-04-03-5 K 近邻算法,简称 K-NN.在如今深度学习盛行的时代,这个经典的机器学习算法经常被轻视.本 ...

  4. 用tensorflow搭建RNN(LSTM)进行MNIST 手写数字辨识

    用tensorflow搭建RNN(LSTM)进行MNIST 手写数字辨识 循环神经网络RNN相比传统的神经网络在处理序列化数据时更有优势,因为RNN能够将加入上(下)文信息进行考虑.一个简单的RNN如 ...

  5. LSTM用于MNIST手写数字图片分类

    按照惯例,先放代码: import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_data #载入数据集 ...

  6. 检测用户命令序列异常——使用LSTM分类算法【使用朴素贝叶斯,类似垃圾邮件分类的做法也可以,将命令序列看成是垃圾邮件】

    通过 搜集 Linux 服务器 的 bash 操作 日志, 通过 训练 识别 出 特定 用户 的 操作 习惯, 然后 进一步 识别 出 异常 操作 行为. 使用 SEA 数据 集 涵盖 70 多个 U ...

  7. 分类-MNIST(手写数字识别)

    这是学习<Hands-On Machine Learning with Scikit-Learn and TensorFlow>的笔记,如果此笔记对该书有侵权内容,请联系我,将其删除. 这 ...

  8. 单向LSTM笔记, LSTM做minist数据集分类

    单向LSTM笔记, LSTM做minist数据集分类 先介绍下torch.nn.LSTM()这个API 1.input_size: 每一个时步(time_step)输入到lstm单元的维度.(实际输入 ...

  9. TensorFlow技术解析与实战学习笔记(15)-----MNIST识别(LSTM)

    一.任务:采用基本的LSTM识别MNIST图片,将其分类成10个数字. 为了使用RNN来分类图片,将每张图片的行看成一个像素序列,因为MNIST图片的大小是28*28像素,所以我们把每一个图像样本看成 ...

随机推荐

  1. 基于python的web应用开发-添加关注者

    社交web允许用户之间相互联系. 例如: 关注者.好友.联系人.联络人或伙伴. 记录两个用户之间的定向联系,在数据库查询中也要使用这种联系. 一.论数据库关系 一对多关系 数据库使用关系建立记录之间的 ...

  2. VUE-CLI Vue安装及开发,npm run build无法查看项目的问题

    Vue-cli 本地安装vue项目 需要安装node.js,用node命令行npm的方式安装Vue 步骤: 1.进入项目地址安装 npm install vue-cli -g 2.初始化一下 ESli ...

  3. mysql版本升级

    环境 mysql安装在centos上,需要升级. mysql的版本是 mysql> select version(); +-----------+ | version() | +-------- ...

  4. 小白的Python之路 day2 文件操作

    文件操作 对文件操作流程 打开文件,得到文件句柄并赋值给一个变量 通过句柄对文件进行操作 关闭文件 现有文件如下 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 1 ...

  5. ArcGIS 网络分析[8.2] 资料2 使用IDatasetContainer2接口的CreateDataset方法创建网络数据集

    上节提及如何使用IDatasetContainer2接口访问到网络数据集,上例可以封装为一个方法. 这节就使用IDatasetContainer2接口(Geodatabase类库)的CreateDat ...

  6. bzoj 4515: [Sdoi2016]游戏

    Description Alice 和 Bob 在玩一个游戏. 游戏在一棵有 n 个点的树上进行.最初,每个点上都只有一个数字,那个数字是 123456789123456789. 有时,Alice 会 ...

  7. 自定义tab吸顶效果一(原理)

    PS:问题:什么是吸顶,吸顶有什么作用,吸顶怎么使用? 在很多app商城中,介绍软件的时候就会使用吸顶效果, 吸顶有很多作用,一个最简单粗暴的作用就是,让用户知道此刻在浏览哪个模块,并可以选择另外的模 ...

  8. Spring基础篇——Spring容器和应用上下文理解

    上文说到,有了Spring之后,通过依赖注入的方式,我们的业务代码不用自己管理关联对象的生命周期.业务代码只需要按照业务本身的流程,走啊走啊,走到哪里,需要另外的对象来协助了,就给Spring说,我想 ...

  9. linux系统下phpstudy里的mysql使用方法

    linux作为一个优秀的服务器端管理系统,其实linux的桌面系统也用起来十分的nice.好吧,如何你在做开发的时候在linux下安装了lmap或者phpstudy,那么在第一次使用其自带的mysql ...

  10. tomcat发布项目绑定域名总结

    现在很多的公司的网站都是用tomcat作为应用服务区的,可是对于初学者,8080端口号是如何去掉的,这些网站是如何和域名绑定到一起的呢?一个tomcat是如何绑定多域名?并且这些域名是如何对应不同的项 ...