有一天,我拿这一本本子给两位同学看,问他们这本本子多少钱,一个说3块,一个说1.5块,但它实际上是4.5块。于是,我们发现,3X1.5=4.5,3+1.5=4.5。那么这样的数有哪些呢?
        我们可以列出方程"x+y=xy"变形可得"y=x/(x-1)",那么我们可以发现它的正整数解只有“x=2,y=2”,证明如下:
            当x=1时,1+y=y,不成立,舍去;
            当x=2时,可得“x=2,y=2”;
            当x>2时,x与x-1互质,y为小数,即无正整数解;
        如果x=0,则可得"x=0,y=0",那x为负整数呢?用类似的证明方法可得该方程无负整数解。
        如果只是整数解呢?因为当x为正整数时y不为负整数,当x为负整数时y不为正整数,所以整数解也只有以上两个。
        对于小数解,就没什么好讨论的了。 
        然后,是一些特殊情况:
            y的最大解:因为"y→ 1+1/(x-1)","1/(x-1)"最大为∞,所以Ymax→ +∞;
            y的最小解:因为"1/(x-1)"最小时"x→ 1-1/+∞","y→ -∞",所以Ymin→ -∞;
            y的正数最小解:即x=+∞时,y→ 1+1/+∞;
            y的负数最大解:即x=1/+∞,y→ (1/+∞)/(1/+∞-1);
            x是整数时,y的正数最大解:其实就是"y=2"了,x为整数时"1/(x-1)"最大为1,所以y=2;
            x是整数时,y的正数最小解:"1/(x-1)"最小为1/+∞,y→ 1+1/+∞;
            x是整数时,y的负数最大解:即"x→ 1-1/+∞",所以y→ -1/+∞;
            x是整数时,y的负数最小解:即"x→ 1/+∞",所以y→ 1/+∞+1;
    另外,证明x与y总有一个不大于2:
        假定x<y,当x>2时,y*x>2y,y+x<2y,即y+x<y*x,所以x与y总有一个不大于2。
     完......

x+y=xy的更多相关文章

  1. x和y为正整数变量,求满足 x+y | xy 的通解。

    x和y为正整数变量,求满足 x+y | xy 的通解. 解:由题设可知存在正整数t满足t(x+y)=xy. 设m=(x,y),则存在正整数u和v满足: x=mu, y=mv, (u,v)=1. 于是有 ...

  2. 青蛙的约会 扩展欧几里得 方程ax+by=c的整数解 一个跑道长为周长为L米,两只青蛙初始位置为x,y;(x!=y,同时逆时针运动,每一次运动分别为m,n米;问第几次运动后相遇,即在同一位置。

    /** 题目:青蛙的约会 链接:https://vjudge.net/contest/154246#problem/R 题意:一个跑道长为周长为L米,两只青蛙初始位置为x,y:(x!=y,同时逆时针运 ...

  3. Python高手之路【二】python基本数据类型

    一:数字 int int(整型): 在32位机器上,整数的位数为32位,取值范围为-2**31-2**31-1,即-2147483648-2147483647 在64位系统上,整数的位数为64位,取值 ...

  4. python-基本数据类型

    /int整数/ 如: 18.73.84 每一个整数都具备如下功能: class int(object): """ int(x=0) -> int or long i ...

  5. 【原】移动web滑屏框架分享

    本月26号参加webrebuild深圳站,会上听了彪叔的对初心的讲解,“工匠精神”这个词又一次被提出,也再次引起了我对它的思考.专注一个项目并把它做得好,很好,更好...现实工作中,忙忙碌碌,抱着完成 ...

  6. NOIp2016 Day1&Day2 解题报告

    Day1 T1 toy 本题考查你会不会编程. //toy //by Cydiater //2016.11.19 #include <iostream> #include <cstd ...

  7. NOIp 11.11/12

    最后一场比较正式的NOIp模拟赛,写一发小总结.题目没什么好说的,大部分很简单,先贴一下代码. 1111 T1 //string //by Cydiater //2016.11.11 #include ...

  8. leetcode--Different Ways to Add Parentheses

    题目链接:https://leetcode.com/submissions/detail/86532557/ 算法类型:分治法 题目分析:计算表达式的所有结果可能性 代码实现: class Solut ...

  9. UVA 11768 Lattice Point or Not(扩展欧几里德)

    将直线转化为ax + by = c的形式,然后扩展欧几里得求在[x1, x2]之间的解 对直线与坐标轴平行的特判 调试了好长时间,注意: 1 正负数转化为整型的处理 2 注意判断有无解 #includ ...

随机推荐

  1. 数据分析与展示——Matplotlib基础绘图函数示例

    Matplotlib库入门 Matplotlib基础绘图函数示例 pyplot基础图表函数概述 函数 说明 plt.plot(x,y,fmt, ...) 绘制一个坐标图 plt.boxplot(dat ...

  2. springboot 结合mybatis

    MyBatis 是一款优秀的持久层框架,它支持定制化 SQL.存储过程以及高级映射.MyBatis 避免了几乎所有的 JDBC 代码和手动设置参数以及获取结果集.MyBatis 可以使用简单的 XML ...

  3. OC学习9——反射机制

    1.OC提供了3种编程方式与运行环境进行交互: 直接通过OC的源代码:这是最常见的方式,开发人员只是编写OC源代码,而运行环境负责在后台工作. 通过NSObject类中定义的方法进行动态编程:因为绝大 ...

  4. [置顶] MVC输出缓存(OutputCache参数详解)

    1.学习之前你应该知道这些 几乎每个项目都会用到缓存,这是必然的.以前在学校时做的网站基本上的一个标准就是1.搞定增删改查2.页面做的不要太差3.能运行(ps真的有这种情况,答辩验收的时候几个人在讲台 ...

  5. bzoj 4013: [HNOI2015]实验比较

    Description 小D 被邀请到实验室,做一个跟图片质量评价相关的主观实验.实验用到的图片集一共有 N 张图片,编号为 1 到 N.实验分若干轮进行,在每轮实验中,小 D会被要求观看某两张随机选 ...

  6. MySql监控优化

    MySQL监控   MySQL服务器硬件和OS(操作系统)调优:   1.有足够的物理内存,能将整个InnoDB文件加载到内存里 —— 如果访问的文件在内存里,而不是在磁盘上,InnoDB会快很多. ...

  7. Siamese Network理解

    提起siamese network一般都会引用这两篇文章: <Learning a similarity metric discriminatively, with application to ...

  8. appium 解锁九宫格

    很多人在自动化的过程中,对解锁9宫格有很多麻烦,特别是app上的有些整个放在整个view中,这就给我们测试解锁九宫格带来问题了,笔者尝试了去解决,但是都没有找到一个很好的方案,那么我就试着先去通过安卓 ...

  9. Head First设计模式之享元模式(蝇量模式)

    一.定义 享元模式(Flyweight Pattern)主要用于减少创建对象的数量,以减少内存占用和提高性能.这种类型的设计模式属于结构型模式,它提供了减少对象数量从而改善应用所需的对象结构的方式. ...

  10. MicroPython-GPS教程之TPYBoardv702控制5110显示当前经纬度

    一.关于TPYBoardV702 TPYBoardV702是目前市面上唯一支持通信定位功能的MicroPython开发板:支持Python3.0及以上版本直接运行.支持GPS+北斗双模定位.GPRS通 ...