有一天,我拿这一本本子给两位同学看,问他们这本本子多少钱,一个说3块,一个说1.5块,但它实际上是4.5块。于是,我们发现,3X1.5=4.5,3+1.5=4.5。那么这样的数有哪些呢?
        我们可以列出方程"x+y=xy"变形可得"y=x/(x-1)",那么我们可以发现它的正整数解只有“x=2,y=2”,证明如下:
            当x=1时,1+y=y,不成立,舍去;
            当x=2时,可得“x=2,y=2”;
            当x>2时,x与x-1互质,y为小数,即无正整数解;
        如果x=0,则可得"x=0,y=0",那x为负整数呢?用类似的证明方法可得该方程无负整数解。
        如果只是整数解呢?因为当x为正整数时y不为负整数,当x为负整数时y不为正整数,所以整数解也只有以上两个。
        对于小数解,就没什么好讨论的了。 
        然后,是一些特殊情况:
            y的最大解:因为"y→ 1+1/(x-1)","1/(x-1)"最大为∞,所以Ymax→ +∞;
            y的最小解:因为"1/(x-1)"最小时"x→ 1-1/+∞","y→ -∞",所以Ymin→ -∞;
            y的正数最小解:即x=+∞时,y→ 1+1/+∞;
            y的负数最大解:即x=1/+∞,y→ (1/+∞)/(1/+∞-1);
            x是整数时,y的正数最大解:其实就是"y=2"了,x为整数时"1/(x-1)"最大为1,所以y=2;
            x是整数时,y的正数最小解:"1/(x-1)"最小为1/+∞,y→ 1+1/+∞;
            x是整数时,y的负数最大解:即"x→ 1-1/+∞",所以y→ -1/+∞;
            x是整数时,y的负数最小解:即"x→ 1/+∞",所以y→ 1/+∞+1;
    另外,证明x与y总有一个不大于2:
        假定x<y,当x>2时,y*x>2y,y+x<2y,即y+x<y*x,所以x与y总有一个不大于2。
     完......

x+y=xy的更多相关文章

  1. x和y为正整数变量,求满足 x+y | xy 的通解。

    x和y为正整数变量,求满足 x+y | xy 的通解. 解:由题设可知存在正整数t满足t(x+y)=xy. 设m=(x,y),则存在正整数u和v满足: x=mu, y=mv, (u,v)=1. 于是有 ...

  2. 青蛙的约会 扩展欧几里得 方程ax+by=c的整数解 一个跑道长为周长为L米,两只青蛙初始位置为x,y;(x!=y,同时逆时针运动,每一次运动分别为m,n米;问第几次运动后相遇,即在同一位置。

    /** 题目:青蛙的约会 链接:https://vjudge.net/contest/154246#problem/R 题意:一个跑道长为周长为L米,两只青蛙初始位置为x,y:(x!=y,同时逆时针运 ...

  3. Python高手之路【二】python基本数据类型

    一:数字 int int(整型): 在32位机器上,整数的位数为32位,取值范围为-2**31-2**31-1,即-2147483648-2147483647 在64位系统上,整数的位数为64位,取值 ...

  4. python-基本数据类型

    /int整数/ 如: 18.73.84 每一个整数都具备如下功能: class int(object): """ int(x=0) -> int or long i ...

  5. 【原】移动web滑屏框架分享

    本月26号参加webrebuild深圳站,会上听了彪叔的对初心的讲解,“工匠精神”这个词又一次被提出,也再次引起了我对它的思考.专注一个项目并把它做得好,很好,更好...现实工作中,忙忙碌碌,抱着完成 ...

  6. NOIp2016 Day1&Day2 解题报告

    Day1 T1 toy 本题考查你会不会编程. //toy //by Cydiater //2016.11.19 #include <iostream> #include <cstd ...

  7. NOIp 11.11/12

    最后一场比较正式的NOIp模拟赛,写一发小总结.题目没什么好说的,大部分很简单,先贴一下代码. 1111 T1 //string //by Cydiater //2016.11.11 #include ...

  8. leetcode--Different Ways to Add Parentheses

    题目链接:https://leetcode.com/submissions/detail/86532557/ 算法类型:分治法 题目分析:计算表达式的所有结果可能性 代码实现: class Solut ...

  9. UVA 11768 Lattice Point or Not(扩展欧几里德)

    将直线转化为ax + by = c的形式,然后扩展欧几里得求在[x1, x2]之间的解 对直线与坐标轴平行的特判 调试了好长时间,注意: 1 正负数转化为整型的处理 2 注意判断有无解 #includ ...

随机推荐

  1. 实现一个 myshell

    重点 1.动手前首先要想清楚为什么实现一个 shell 要用到 fork (创建子进程),为什么不能把活全由 shell 干了呢?原因其实很简单,进程是运行的程序,一个进程就只能有一个程序(这个知识点 ...

  2. http中的get和post(一)

    GET和POST有什么区别?及为什么网上的多数答案都是错的. 如果有人问你,GET和POST,有什么区别?你会如何回答? 我的经历 前几天有人问我这个问题.我说GET是用于获取数据的,POST,一般用 ...

  3. [array] leetCode-27. Remove Element - Easy

    27. Remove Element - Easy descrition Given an array and a value, remove all instances of that value ...

  4. 浅谈传统语音通信和APP语音通信音频软件开发之不同点

    本人在传统的语音通信公司做过手机和IP电话上的语音软件开发,也在移动互联网公司做过APP上的语音软件开发.现在带实时语音通信功能的APP有好多,主流的有微信语音.QQ电话.钉钉等,当然也包括我开发过的 ...

  5. INITTAB 配置文件

    Inittab 文件详解       init的进程号是1(ps -aux | less),从这一点就能看出,init进程是系统所有进程的起点,Linux在完成核内引导以后,就开始运行init程序. ...

  6. Xampp配置本地域名及常见错误解决

    本地域名配置 1.计算机-->C盘-->Windows-->System32-->drivers-->etc-->hosts 127.0.0.1       loc ...

  7. Webpack 2 视频教程 016 - Webpack 2 中生成 SourceMaps

    原文发表于我的技术博客 这是我免费发布的高质量超清「Webpack 2 视频教程」. Webpack 作为目前前端开发必备的框架,Webpack 发布了 2.0 版本,此视频就是基于 2.0 的版本讲 ...

  8. Java核心技术(Java白皮书)卷Ⅰ 第一章 Java程序设计概述

    第1章 Java程序设计概述1.1 Java程序设计平台 具有令人赏心悦目的语法和易于理解的语言,与其他许多优秀语言一样,Java满足这些要求. 可移植性 垃圾收集 提供大型的库  如果想要有奇特的绘 ...

  9. SSM框架开发web项目系列(五) Spring集成MyBatis

    前言 在前面的MyBatis部分内容中,我们已经可以独立的基于MyBatis构建一个数据库访问层应用,但是在实际的项目开发中,我们的程序不会这么简单,层次也更加复杂,除了这里说到的持久层,还有业务逻辑 ...

  10. linux之 NFS服务器与客户端的安装与配置

    今天实验室需要搭建NAS,我负责的是NFS的安装与配置,现将整理的文档分享一下: 参考一:Linux下rpm 安装包方式安装 http://linux.chinaunix.net/techdoc/be ...