MapReduce中,分片、分区、排序和分组(Group)的关系图:

分片大小

对于HDFS中存储的一个文件,要进行Map处理前,需要将它切分成多个块,才能分配给不同的MapTask去执行。 分片的数量等于启动的MapTask的数量。默认情况下,分片的大小就是HDFS的blockSize。

Map阶段的对数据文件的切片,使用如下判断逻辑:

  protected long computeSplitSize(long blockSize, long minSize,
long maxSize) {
return Math.max(minSize, Math.min(maxSize, blockSize));
}

blockSize:默认大小是128M(dfs.blocksize

minSize:默认是1byte(mapreduce.input.fileinputformat.split.minsize):

maxSize:默认值是Long.MaxValue(mapreduce.input.fileinputformat.split.minsize)

由此可以看出两个可以自定义的值(minSize和maxSize)与blockSize之间的关系如下:

当blockSize位于minSize和maxSize 之间时,认blockSize:

当maxSize小于blockSize时,认maxSize:

当minSize大于blockSize时,认minSize:

另外一个极端的情况,maxSize小于minSize时,认minsize,可以理解为minSize的优先级比maxSize大:

实际使用中,建议不要去修改maxSize,通过调整minSize(使他大于blockSize)就可以设定分片(Split)的大小了。

总之通过minSize和maxSize的来设置切片大小,使之在blockSize的上下自由调整。

什么时候需要调整分片的大小

首先要明白,HDFS的分块其实是指HDFS在存储文件时的一个参数。而这里分片的大小是为了业务逻辑用的。分片的大小直接影响到MapTask的数量,你可以根据实际的业务需求来调整分片的大小。

分区

在Reduce过程中,可以根据实际需求(比如按某个维度进行归档,类似于数据库的分组),把Map完的数据Reduce到不同的文件中。分区的设置需要与ReduceTaskNum配合使用。比如想要得到5个分区的数据结果。那么就得设置5个ReduceTask。

自定义Partitioner:

public class URLResponseTimePartitioner extends Partitioner<Text, LongWritable>{

    @Override
public int getPartition(Text key, LongWritable value, int numPartitions) {
String accessPath = key.toString();
if(accessPath.endsWith(".do")) {
return 0;
}
return 1;
} }

然后可以在job中设置partitioner:

        job.setPartitionerClass(URLResponseTimePartitioner.class);
//URLResponseTimePartitioner returns 1 or 0,so num of reduce task must be 2
job.setNumReduceTasks(2);

两个分区会产生两个最终结果文件:

[root@centos01 ~]# hadoop fs -ls /access/log/response-time
// :: WARN util.NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin-java classes where applicable
Found items
-rw-r--r-- root supergroup -- : /access/log/response-time/_SUCCESS
-rw-r--r-- root supergroup -- : /access/log/response-time/part-r-
-rw-r--r-- root supergroup -- : /access/log/response-time/part-r-

其中00000中存放着.do的统计结果,00001则存放其他访问路径的统计结果。

[root@centos01 ~]# hadoop fs -cat /access/log/response-time/part-r- |more
// :: WARN util.NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin-java classes where applicable
//MyAdmin/scripts/setup.php 3857
//css/console.css 356
//css/result_html.css 628
//images/male.png 268
//js/tooltipster/css/plugins/tooltipster/sideTip/themes/tooltipster-sideTip-borderless.min.css 1806
//js/tooltipster/css/tooltipster.bundle.min.css 6495
//myadmin/scripts/setup.php 3857
//phpMyAdmin/scripts/setup.php 3857
//phpmyadmin/scripts/setup.php 3857
//pma/scripts/setup.php 3857
//search_children.js
/Dashboard.action
/Homepage.action
/My97DatePicker/WdatePicker.js
/My97DatePicker/calendar.js
/My97DatePicker/lang/zh-cn.js
/My97DatePicker/skin/WdatePicker.css
/My97DatePicker/skin/default/datepicker.css
/My97DatePicker/skin/default/img.gif

排序

要想最终结果中按某个特性排序,则需要在Map阶段,通过Key的排序来实现。

例如,想让上述平均响应时间的统计结果按降序排列,实现如下:

关键就在于这个用于OUTKey的Bean。它实现了Comparable接口,所以输出的结果就是按compareTo的结果有序。

由于这个类会作为Key,所以它的equals方法很重要,会作为,需要按实际情况重写。这里重写的逻辑是url相等则表示是同一个Key。(虽然Key相同的情况其实没有,因为之前的responseTime统计结果已经把url做了group,但是这里还是要注意有这么个逻辑。)

排序并不是依赖于key的equals!

    public class URLResponseTime implements WritableComparable<URLResponseTime>{
String url;
long avgResponseTime; public void write(DataOutput out) throws IOException {
out.writeUTF(url);
out.writeLong(avgResponseTime);
} public void readFields(DataInput in) throws IOException {
this.url = in.readUTF();
this.avgResponseTime = in.readLong();
} public int compareTo(URLResponseTime urt) {
return this.avgResponseTime > urt.avgResponseTime ? -1 : 1;
} public String getUrl() {
return url;
} public void setUrl(String url) {
this.url = url;
} public long getAvgResponseTime() {
return avgResponseTime;
} public void setAvgResponseTime(long avgResponseTime) {
this.avgResponseTime = avgResponseTime;
} @Override
public int hashCode() {
final int prime = 31;
int result = 1;
result = prime * result + ((url == null) ? 0 : url.hashCode());
return result;
} @Override
public boolean equals(Object obj) {
if (this == obj)
return true;
if (obj == null)
return false;
if (getClass() != obj.getClass())
return false;
URLResponseTime other = (URLResponseTime) obj;
if (url == null) {
if (other.url != null)
return false;
} else if (!url.equals(other.url))
return false;
return true;
} @Override
public String toString() {
return url;
} }

然后就简单了,在Map和Reduce分别执行简单的写和读操作就行了,没有更多的处理,依赖于Hadoop MapReduce框架自身的特点就实现了排序:

public class URLResponseTimeSortMapper extends Mapper<LongWritable,Text,URLResponseTime,LongWritable>{

    //make a member property to avoid new instance every time when map function invoked.
URLResponseTime key = new URLResponseTime();
LongWritable value = new LongWritable(); @Override
protected void map(LongWritable key, Text value, Context context)
throws IOException, InterruptedException { String line = value.toString();
String[] logs = line.split("\t");
String url = logs[0];
String responseTimeStr = logs[1]; long responseTime = Long.parseLong(responseTimeStr); this.key.setUrl(url);
this.key.setAvgResponseTime(responseTime);
this.value.set(responseTime);
context.write(this.key,this.value);
} }
public class URLResponseTimeSortReducer extends Reducer<URLResponseTime, LongWritable, URLResponseTime, LongWritable> {

    @Override
protected void reduce(URLResponseTime key, Iterable<LongWritable> values,
Context ctx) throws IOException, InterruptedException {
ctx.write(key, values.iterator().next());
} }

参考:

Hadoop Wiki,HowManyMapsAndReduces :https://wiki.apache.org/hadoop/HowManyMapsAndReduces

大数据学习(5)MapReduce切片(Split)和分区(Partitioner)的更多相关文章

  1. 大数据篇:MapReduce

    MapReduce MapReduce是什么? MapReduce源自于Google发表于2004年12月的MapReduce论文,是面向大数据并行处理的计算模型.框架和平台,而Hadoop MapR ...

  2. 大数据学习系列之四 ----- Hadoop+Hive环境搭建图文详解(单机)

    引言 在大数据学习系列之一 ----- Hadoop环境搭建(单机) 成功的搭建了Hadoop的环境,在大数据学习系列之二 ----- HBase环境搭建(单机)成功搭建了HBase的环境以及相关使用 ...

  3. 大数据学习系列之五 ----- Hive整合HBase图文详解

    引言 在上一篇 大数据学习系列之四 ----- Hadoop+Hive环境搭建图文详解(单机) 和之前的大数据学习系列之二 ----- HBase环境搭建(单机) 中成功搭建了Hive和HBase的环 ...

  4. 大数据学习系列之六 ----- Hadoop+Spark环境搭建

    引言 在上一篇中 大数据学习系列之五 ----- Hive整合HBase图文详解 : http://www.panchengming.com/2017/12/18/pancm62/ 中使用Hive整合 ...

  5. 大数据学习系列之七 ----- Hadoop+Spark+Zookeeper+HBase+Hive集群搭建 图文详解

    引言 在之前的大数据学习系列中,搭建了Hadoop+Spark+HBase+Hive 环境以及一些测试.其实要说的话,我开始学习大数据的时候,搭建的就是集群,并不是单机模式和伪分布式.至于为什么先写单 ...

  6. 大数据学习系列之九---- Hive整合Spark和HBase以及相关测试

    前言 在之前的大数据学习系列之七 ----- Hadoop+Spark+Zookeeper+HBase+Hive集群搭建 中介绍了集群的环境搭建,但是在使用hive进行数据查询的时候会非常的慢,因为h ...

  7. 大数据学习系列之—HBASE

    hadoop生态系统 zookeeper负责协调 hbase必须依赖zookeeper flume 日志工具 sqoop 负责 hdfs dbms 数据转换 数据到关系型数据库转换 大数据学习群119 ...

  8. 大数据学习之Hadoop快速入门

    1.Hadoop生态概况 Hadoop是一个由Apache基金会所开发的分布式系统集成架构,用户可以在不了解分布式底层细节情况下,开发分布式程序,充分利用集群的威力来进行高速运算与存储,具有可靠.高效 ...

  9. 大数据学习(一) | 初识 Hadoop

    作者: seriouszyx 首发地址:https://seriouszyx.top/ 代码均可在 Github 上找到(求Star) 最近想要了解一些前沿技术,不能一门心思眼中只有 web,因为我目 ...

  10. 大数据学习路线,来qun里分享干货,

    一.Linux lucene: 全文检索引擎的架构 solr: 基于lucene的全文搜索服务器,实现了可配置.可扩展并对查询性能进行了优化,并且提供了一个完善的功能管理界面. 推荐一个大数据学习群 ...

随机推荐

  1. javaWeb内置对象

    jsp内置对象是web容器创建的一组对象. jsp内置对象的名称是jsp的保留字. jsp内置对象是可以直接在jsp页面使用的对象,无需使用new获取实例. jsp九大内置对象 1.request 2 ...

  2. ADO.NET中SqlCommand对数据库操作

    我们要不断地进行数据库的读写,那么ExecuteNonQuery(),ExecuteReader()与ExecuteScalar()就是我们在对数据库进行操作时要用到的,下面我来依次认识一下:     ...

  3. 插件lombok的介绍安装

    Lombok插件 介绍一个不错的Eclipse插件Lombok 该插件对Log4j简化的代码,因为不大,所以jar包也存在呢! Lombox是Eclipse的一个插件,用来自动生成Java代码,减少手 ...

  4. [转载] Mahout

    转载自http://hadoop.readthedocs.org/en/latest/Hadoop-Mahout.html# Mahout 12.1 简介 Mahout为推荐引擎提供了一些可扩展的机器 ...

  5. Python之元类

    类型对象负责创建对象实例,控制对象行为.那么类型对象又由谁来创建呢? 元类(metaclass)——类型的类型 New-Style Class的默认类型是type >>> class ...

  6. System.Transactions 事务超时属性

    最近遇到一个处理较多数据的大事务,当进行至10分钟左右时,爆出事务超时异常,如果Machine.config中不设置最大超时时间,则默认超时时间为10分钟 MachineSettingsSection ...

  7. pattern

    A compiled representation of a regular expression. A regular expression, specified as a string, must ...

  8. HTTPS 传输优化详解之动态 TLS Record Size

    笔者在过去分析了诸多可以减少 HTTPS 传输延迟的方法,如分布式 Session 的复用: 启用 HSTS,客户端默认开启 HTTPS 跳转:采用 HTTP/2 传输协议:使用 ChaCha20-P ...

  9. Android WebView 上传各种文件(包括拍照 录像 录音 文件 音乐 等,用到图片或拍照的,可以参考下)

    我也是从网上扒下来的,经过多次实验,找到了个好用的.网上能搜到最多的也就是这个解决方案,我英文不好,也没仔细研究,但大多数都是出自这: http://stackoverflow.com/questio ...

  10. HTML页面加载异常,按F12调试后居然又好了的解决办法!

    原因: 你的代码中获取数据那一段应该是有console控制台调用的代码,一般应该是console.log之类的,就是因为这句话在没开F12的时候,console是个undefined的东西就卡在那啦. ...