前言

上一篇中讲述如何搭建kafka集群,本篇则讲述如何简单的使用 kafka 。不过在使用kafka的时候,还是应该简单的了解下kafka。

Kafka的介绍

Kafka是一种高吞吐量的分布式发布订阅消息系统,它可以处理消费者规模的网站中的所有动作流数据。

Kafka 有如下特性:

  • 以时间复杂度为O(1)的方式提供消息持久化能力,即使对TB级以上数据也能保证常数时间复杂度的访问性能。
  • 高吞吐率。即使在非常廉价的商用机器上也能做到单机支持每秒100K条以上消息的传输。
  • 支持Kafka Server间的消息分区,及分布式消费,同时保证每个Partition内的消息顺序传输。
  • 同时支持离线数据处理和实时数据处理。
  • Scale out:支持在线水平扩展。

kafka的术语

  • Broker:Kafka集群包含一个或多个服务器,这种服务器被称为broker。
  • Topic:每条发布到Kafka集群的消息都有一个类别,这个类别被称为Topic。(物理上不同Topic的消息分开存储,逻辑上一个Topic的消息虽然保存于一个或多个broker上但用户只需指定消息的Topic即可生产或消费数据而不必关心数据存于何处)
  • Partition:Partition是物理上的概念,每个Topic包含一个或多个Partition。
  • Producer:负责发布消息到Kafka broker。
  • Consumer:消息消费者,向Kafka broker读取消息的客户端。
  • Consumer Group:每个Consumer属于一个特定的Consumer Group(可为每个Consumer指定group name,若不指定group name则属于默认的group)。

kafka核心Api

kafka有四个核心API

  • 应用程序使用producer API发布消息到1个或多个topic中。
  • 应用程序使用consumer API来订阅一个或多个topic,并处理产生的消息。
  • 应用程序使用streams API充当一个流处理器,从1个或多个topic消费输入流,并产生一个输出流到1个或多个topic,有效地将输入流转换到输出流。
  • connector API允许构建或运行可重复使用的生产者或消费者,将topic链接到现有的应用程序或数据系统。

示例图如下:

kafka 应用场景

  • 构建可在系统或应用程序之间可靠获取数据的实时流数据管道。
  • 构建实时流应用程序,可以转换或响应数据流。

以上介绍参考kafka官方文档。

开发准备

如果我们要开发一个kafka的程序,应该做些什么呢?

首先,在搭建好kafka环境之后,我们要考虑的是我们是生产者还是消费者,也就是消息的发送者还是接受者。

不过在本篇中,生产者和消费者都会进行开发和讲解。

在大致的了解kafka之后,我们来开发第一个程序。

这里用的开发语言是Java,构建工具Maven。

Maven的依赖如下:

  1. <dependency>
  2. <groupId>org.apache.kafka</groupId>
  3. <artifactId>kafka_2.12</artifactId>
  4. <version>1.0.0</version>
  5. <scope>provided</scope>
  6. </dependency>
  7. <dependency>
  8. <groupId>org.apache.kafka</groupId>
  9. <artifactId>kafka-clients</artifactId>
  10. <version>1.0.0</version>
  11. </dependency>
  12. <dependency>
  13. <groupId>org.apache.kafka</groupId>
  14. <artifactId>kafka-streams</artifactId>
  15. <version>1.0.0</version>
  16. </dependency>

Kafka Producer

在开发生产的时候,先简单的介绍下kafka各种配置说明:

  • bootstrap.servers: kafka的地址。
  • acks:消息的确认机制,默认值是0。

    acks=0:如果设置为0,生产者不会等待kafka的响应。

    acks=1:这个配置意味着kafka会把这条消息写到本地日志文件中,但是不会等待集群中其他机器的成功响应。

    acks=all:这个配置意味着leader会等待所有的follower同步完成。这个确保消息不会丢失,除非kafka集群中所有机器挂掉。这是最强的可用性保证。
  • retries:配置为大于0的值的话,客户端会在消息发送失败时重新发送。
  • batch.size:当多条消息需要发送到同一个分区时,生产者会尝试合并网络请求。这会提高client和生产者的效率。
  • key.serializer: 键序列化,默认org.apache.kafka.common.serialization.StringDeserializer。
  • value.deserializer:值序列化,默认org.apache.kafka.common.serialization.StringDeserializer。

    ...

    还有更多配置,可以去查看官方文档,这里就不在说明了。

    那么我们kafka 的producer配置如下:
  1. Properties props = new Properties();
  2. props.put("bootstrap.servers", "master:9092,slave1:9092,slave2:9092");
  3. props.put("acks", "all");
  4. props.put("retries", 0);
  5. props.put("batch.size", 16384);
  6. props.put("key.serializer", StringSerializer.class.getName());
  7. props.put("value.serializer", StringSerializer.class.getName());
  8. KafkaProducer<String, String> producer = new KafkaProducer<String, String>(props);

kafka的配置添加之后,我们便开始生产数据,生产数据代码只需如下就行:

  1. producer.send(new ProducerRecord<String, String>(topic,key,value));
  • topic: 消息队列的名称,可以先行在kafka服务中进行创建。如果kafka中并未创建该topic,那么便会自动创建!
  • key:键值,也就是value对应的值,和Map类似。
  • value:要发送的数据,数据格式为String类型的。

在写好生产者程序之后,那我们先来生产吧!

我这里发送的消息为:

  1. String messageStr="你好,这是第"+messageNo+"条数据";

并且只发送1000条就退出,结果如下:

可以看到信息成功的打印了。

如果不想用程序进行验证程序是否发送成功,以及消息发送的准确性,可以在kafka服务器上使用命令查看。

Kafka Consumer

kafka消费这块应该来说是重点,毕竟大部分的时候,我们主要使用的是将数据进行消费。

kafka消费的配置如下:

  • bootstrap.servers: kafka的地址。
  • group.id:组名 不同组名可以重复消费。例如你先使用了组名A消费了kafka的1000条数据,但是你还想再次进行消费这1000条数据,并且不想重新去产生,那么这里你只需要更改组名就可以重复消费了。
  • enable.auto.commit:是否自动提交,默认为true。
  • auto.commit.interval.ms: 从poll(拉)的回话处理时长。
  • session.timeout.ms:超时时间。
  • max.poll.records:一次最大拉取的条数。
  • auto.offset.reset:消费规则,默认earliest 。

    earliest: 当各分区下有已提交的offset时,从提交的offset开始消费;无提交的offset时,从头开始消费 。

    latest: 当各分区下有已提交的offset时,从提交的offset开始消费;无提交的offset时,消费新产生的该分区下的数据 。

    none: topic各分区都存在已提交的offset时,从offset后开始消费;只要有一个分区不存在已提交的offset,则抛出异常。
  • key.serializer: 键序列化,默认org.apache.kafka.common.serialization.StringDeserializer。
  • value.deserializer:值序列化,默认org.apache.kafka.common.serialization.StringDeserializer。

那么我们kafka 的consumer配置如下:

  1. Properties props = new Properties();
  2. props.put("bootstrap.servers", "master:9092,slave1:9092,slave2:9092");
  3. props.put("group.id", GROUPID);
  4. props.put("enable.auto.commit", "true");
  5. props.put("auto.commit.interval.ms", "1000");
  6. props.put("session.timeout.ms", "30000");
  7. props.put("max.poll.records", 1000);
  8. props.put("auto.offset.reset", "earliest");
  9. props.put("key.deserializer", StringDeserializer.class.getName());
  10. props.put("value.deserializer", StringDeserializer.class.getName());
  11. KafkaConsumer<String, String> consumer = new KafkaConsumer<String, String>(props);

由于我这是设置的自动提交,所以消费代码如下:

我们需要先订阅一个topic,也就是指定消费哪一个topic。

  1. consumer.subscribe(Arrays.asList(topic));

订阅之后,我们再从kafka中拉取数据:

  1. ConsumerRecords<String, String> msgList=consumer.poll(1000);

一般来说进行消费会使用监听,这里我们就用for(;;)来进行监听, 并且设置消费1000条就退出!

结果如下:

可以看到我们这里已经成功消费了生产的数据了。

代码

那么生产者和消费者的代码如下:

生产者:

  1. import java.util.Properties;
  2. import org.apache.kafka.clients.producer.KafkaProducer;
  3. import org.apache.kafka.clients.producer.ProducerRecord;
  4. import org.apache.kafka.common.serialization.StringSerializer;
  5. /**
  6. *
  7. * Title: KafkaProducerTest
  8. * Description:
  9. * kafka 生产者demo
  10. * Version:1.0.0
  11. * @author pancm
  12. * @date 2018年1月26日
  13. */
  14. public class KafkaProducerTest implements Runnable {
  15. private final KafkaProducer<String, String> producer;
  16. private final String topic;
  17. public KafkaProducerTest(String topicName) {
  18. Properties props = new Properties();
  19. props.put("bootstrap.servers", "master:9092,slave1:9092,slave2:9092");
  20. props.put("acks", "all");
  21. props.put("retries", 0);
  22. props.put("batch.size", 16384);
  23. props.put("key.serializer", StringSerializer.class.getName());
  24. props.put("value.serializer", StringSerializer.class.getName());
  25. this.producer = new KafkaProducer<String, String>(props);
  26. this.topic = topicName;
  27. }
  28. @Override
  29. public void run() {
  30. int messageNo = 1;
  31. try {
  32. for(;;) {
  33. String messageStr="你好,这是第"+messageNo+"条数据";
  34. producer.send(new ProducerRecord<String, String>(topic, "Message", messageStr));
  35. //生产了100条就打印
  36. if(messageNo%100==0){
  37. System.out.println("发送的信息:" + messageStr);
  38. }
  39. //生产1000条就退出
  40. if(messageNo%1000==0){
  41. System.out.println("成功发送了"+messageNo+"条");
  42. break;
  43. }
  44. messageNo++;
  45. }
  46. } catch (Exception e) {
  47. e.printStackTrace();
  48. } finally {
  49. producer.close();
  50. }
  51. }
  52. public static void main(String args[]) {
  53. KafkaProducerTest test = new KafkaProducerTest("KAFKA_TEST");
  54. Thread thread = new Thread(test);
  55. thread.start();
  56. }
  57. }

消费者:

  1. import java.util.Arrays;
  2. import java.util.Properties;
  3. import org.apache.kafka.clients.consumer.ConsumerRecord;
  4. import org.apache.kafka.clients.consumer.ConsumerRecords;
  5. import org.apache.kafka.clients.consumer.KafkaConsumer;
  6. import org.apache.kafka.common.serialization.StringDeserializer;
  7. /**
  8. *
  9. * Title: KafkaConsumerTest
  10. * Description:
  11. * kafka消费者 demo
  12. * Version:1.0.0
  13. * @author pancm
  14. * @date 2018年1月26日
  15. */
  16. public class KafkaConsumerTest implements Runnable {
  17. private final KafkaConsumer<String, String> consumer;
  18. private ConsumerRecords<String, String> msgList;
  19. private final String topic;
  20. private static final String GROUPID = "groupA";
  21. public KafkaConsumerTest(String topicName) {
  22. Properties props = new Properties();
  23. props.put("bootstrap.servers", "master:9092,slave1:9092,slave2:9092");
  24. props.put("group.id", GROUPID);
  25. props.put("enable.auto.commit", "true");
  26. props.put("auto.commit.interval.ms", "1000");
  27. props.put("session.timeout.ms", "30000");
  28. props.put("auto.offset.reset", "earliest");
  29. props.put("key.deserializer", StringDeserializer.class.getName());
  30. props.put("value.deserializer", StringDeserializer.class.getName());
  31. this.consumer = new KafkaConsumer<String, String>(props);
  32. this.topic = topicName;
  33. this.consumer.subscribe(Arrays.asList(topic));
  34. }
  35. @Override
  36. public void run() {
  37. int messageNo = 1;
  38. System.out.println("---------开始消费---------");
  39. try {
  40. for (;;) {
  41. msgList = consumer.poll(1000);
  42. if(null!=msgList&&msgList.count()>0){
  43. for (ConsumerRecord<String, String> record : msgList) {
  44. //消费100条就打印 ,但打印的数据不一定是这个规律的
  45. if(messageNo%100==0){
  46. System.out.println(messageNo+"=======receive: key = " + record.key() + ", value = " + record.value()+" offset==="+record.offset());
  47. }
  48. //当消费了1000条就退出
  49. if(messageNo%1000==0){
  50. break;
  51. }
  52. messageNo++;
  53. }
  54. }else{
  55. Thread.sleep(1000);
  56. }
  57. }
  58. } catch (InterruptedException e) {
  59. e.printStackTrace();
  60. } finally {
  61. consumer.close();
  62. }
  63. }
  64. public static void main(String args[]) {
  65. KafkaConsumerTest test1 = new KafkaConsumerTest("KAFKA_TEST");
  66. Thread thread1 = new Thread(test1);
  67. thread1.start();
  68. }
  69. }

注: master、slave1、slave2 是因为我在自己的环境做了关系映射,这个可以换成服务器的IP。

当然项目我放在Github上了,有兴趣的可以看看。 https://github.com/xuwujing/kafka

总结

简单的开发一个kafka的程序需要以下步骤:

  1. 成功搭建kafka服务器,并成功启动!
  2. 得到kafka服务信息,然后在代码中进行相应的配置。
  3. 配置完成之后,监听kafka中的消息队列是否有消息产生。
  4. 将产生的数据进行业务逻辑处理!

kafka介绍参考官方文档:

http://kafka.apache.org/intro

到此,本文就结束了,谢谢阅读!

Kafka 使用Java实现数据的生产和消费demo的更多相关文章

  1. JAVA代码之RocketMQ生产和消费数据

    一.启动RocketMQ [root@master ~]# cat /etc/hosts # Do not remove the following line, or various programs ...

  2. 【kafka学习之六】kakfa消息生产、消费示例

    环境 虚拟机:VMware 10 Linux版本:CentOS-6.5-x86_64 客户端:Xshell4 FTP:Xftp4 jdk1.8 kafka_2.11-0.11.0.0 zookeepe ...

  3. 大数据项目之_15_电信客服分析平台_01&02_项目背景+项目架构+项目实现+数据生产+数据采集/消费(存储)

    一.项目背景二.项目架构三.项目实现3.1.数据生产3.1.1.数据结构3.1.2.编写代码3.1.3.打包测试3.2.数据采集/消费(存储)3.2.1.数据采集:采集实时产生的数据到 kafka 集 ...

  4. spring整合kafka项目生产和消费测试结果记录(一)

    使用spring+springMVC+mybatis+kafka做了两个web项目,一个是生产者,一个是消费者. 通过JMeter测试工具模拟100个用户并发访问生产者项目,发送json数据给生产者的 ...

  5. 4 kafka集群部署及kafka生产者java客户端编程 + kafka消费者java客户端编程

    本博文的主要内容有   kafka的单机模式部署 kafka的分布式模式部署 生产者java客户端编程 消费者java客户端编程 运行kafka ,需要依赖 zookeeper,你可以使用已有的 zo ...

  6. 【sparkStreaming】kafka作为数据源的生产和消费

    1.建立生产者发送数据 (1)配置zookeeper属性信息props (2)通过 new KafkaProducer[KeyType,ValueType](props) 建立producer (3) ...

  7. 一次flume exec source采集日志到kafka因为单条日志数据非常大同步失败的踩坑带来的思考

    本次遇到的问题描述,日志采集同步时,当单条日志(日志文件中一行日志)超过2M大小,数据无法采集同步到kafka,分析后,共踩到如下几个坑.1.flume采集时,通过shell+EXEC(tail -F ...

  8. Java多线程学习笔记--生产消费者模式

    实际开发中,我们经常会接触到生产消费者模型,如:Android的Looper相应handler处理UI操作,Socket通信的响应过程.数据缓冲区在文件读写应用等.强大的模型框架,鉴于本人水平有限目前 ...

  9. Java大数据人才应用领域广,就业薪酬高

    互联网创造了大数据应用的规模化环境,大数据应用成功的案例大都是在互联网上发生的, 互联网业务提供了数据,互联网企业开发了处理软件,互联网企业的创新带来了大数据应用 的活跃,没有互联网便没有今天的大数据 ...

随机推荐

  1. 15个超强悍的CSS3圆盘时钟动画赏析

    在网页上,特别是个人博客中经常会用到时钟插件,一款个性化的时钟插件不仅可以让页面显得美观,而且可以让访客看到当前的日期和时间.今天我们给大家收集了15个超强悍的圆盘时钟动画,很多都是基于CSS3,也有 ...

  2. 02-JAVA基础及面向对象(补充)

    引用数据类型 java中的数据类型可以分为 基本数据类型 和 引用数据类型 两大类 int float char boolean等都是基本数据类型 类类型都是引用数据类型 引用数据类型类似C语言中的指 ...

  3. 基于IndexedDB实现简单文件系统

    现在的indexedDB已经有几个成熟的库了,比如西面这几个,任何一个都是非常出色的. 用别人的东西好处是上手快,看文档就好,要是文档不太好,那就有点尴尬了. dexie.js :A Minimali ...

  4. TensorBoard的使用(结合线性模型)

    TensorBoard是TensorFlow 的可视化工具.主要为了更方便用户理解 TensorFlow 程序.调试与优化,用户可以用 TensorBoard 来展现 TensorFlow 图像,绘制 ...

  5. C#中的异步学习

    C#中的异步 C#5.0版本发布有一个"主题那就是异步编程. 我们先创建一个windowForm窗体,实现下面效果,然后我们通过简单的案例对比同步和异步: 首先我们编写一个耗时方法: /// ...

  6. 6、ABPZero系列教程之拼多多卖家工具 框架后台的设置

    接着上篇文章,现在去修改注册登录逻辑代码还为时过早,我们还需要到后台去设置一些配置. 管理---设置 先配置好这2项设置,邮箱配置是为了验证注册时功能是否正常,下一篇文章需要用到. 注:邮箱配置中的密 ...

  7. tornado SSL 证书获取与服务器配置

    转载注明出处: http://www.cnblogs.com/ityoung/p/8296088.html 自动化测试/持续集成/测试开发 QQ交流群: 70160503 服务端生成证书 进入 ope ...

  8. 从Unity中的Attribute到AOP(六)

    本文将重点对Unity剩下常用的Attribute进行讲解,其他不常用的Attribute各位可以自行去官方文档查阅. 首先是UnityEngine命名空间下的. ColorUsage,这个主要作用于 ...

  9. TLD网络资源汇总--学习理解之(四)

    原文:http://blog.csdn.net/mysniper11/article/details/8726649 引文地址:http://www.cnblogs.com/lxy2017/p/392 ...

  10. Java中的集合框架(中)

    Map和HashMap Map接口 1.Map提供了一种映射关系,其中的元素是以键值对(key-value)的形式存储的,能够实现根据key快速查找value 2.Map中的键值对以Entry类型的对 ...