MySQL InnoDB四个事务级别 与 脏读、不反复读、幻读
MySQL InnoDB事务隔离级别脏读、可反复读、幻读
希望通过本文。能够加深读者对ySQL InnoDB的四个事务隔离级别。以及脏读、不反复读、幻读的理解。
MySQL InnoDB事务的隔离级别有四级,默认是“可反复读”(REPEATABLE
READ)。
· 未提交读(READUNCOMMITTED)。
还有一个事务改动了数据,但尚未提交。而本事务中的SELECT会读到这些未被提交的数据(脏读)。
· 提交读(READCOMMITTED)。本事务读取到的是最新的数据(其它事务提交后的)。
问题是。在同一个事务里,前后两次同样的SELECT会读到不同的结果(不反复读)。
· 可反复读(REPEATABLEREAD)。在同一个事务里。SELECT的结果是事务開始时时间点的状态,因此,相同的SELECT操作读到的结果会是一致的。
可是,会有幻读现象(稍后解释)。
· 串行化(SERIALIZABLE)。读操作会隐式获取共享锁。能够保证不同事务间的相互排斥。
四个级别逐渐增强,每一个级别解决一个问题。
· 脏读,最easy理解。还有一个事务改动了数据,但尚未提交。而本事务中的SELECT会读到这些未被提交的数据。
· 不反复读。
攻克了脏读后,会遇到,同一个事务运行过程中,另外一个事务提交了新数据,因此本事务先后两次读到的数据结果会不一致。
· 幻读。攻克了不反复读,保证了同一个事务里,查询的结果都是事务開始时的状态(一致性)。可是。假设还有一个事务同一时候提交了新数据,本事务再更新时,就会“惊奇的”发现了这些新数据。貌似之前读到的数据是“鬼影”一样的幻觉。
MySQL InnoDB事务隔离级别可设置为global和session级别。
事务隔离级别查看
查看当前session的事务隔离级别:
mysql> show variables like '%tx_isolation%';
+---------------+--------------+
| Variable_name | Value |
+---------------+--------------+
| tx_isolation | SERIALIZABLE |
+---------------+--------------+
查看全局的事务隔离级别。
mysql> show global variables like '%tx_isolation%';
+---------------+-----------------+
| Variable_name | Value |
+---------------+-----------------+
| tx_isolation | REPEATABLE-READ |
+---------------+-----------------+
1 row in set (0.00 sec)
设置事务隔离级别:
设置global事务隔离级别:
set global isolation level read committed;
注意一点的设置global并不会对当前session生效。
设置session事务隔离级别sql脚本:
set session transaction isolation level read uncommitted;
set session transaction isolation level read committed;
set session transaction isolation level REPEATABLE READ;
set session transaction isolation level SERIALIZABLE;
上面的文字,读起来并非那么easy让人理解。下面用几个实验对InnoDB的四个事务隔离级别做具体的解释,希望通过实验来加深大家对InnoDB的事务隔离级别理解。
CREATE TABLE `t` (
`a` INT (11) NOT NULL PRIMARY KEY
) ENGINE = INNODB DEFAULT CHARSET = UTF8; INSERT INTO t (a) VALUES (1),(2),(3);
实验一:解释脏读、可反复读问题
更新事务 |
事务A READ-UNCOMMITTED |
事务B READ-COMMITTED, |
事务C-1 REPEATABLE-READ |
事务C-2 REPEATABLE-READ |
事务D SERIALIZABLE |
set autocommit =0; |
|||||
start transaction ; |
start transaction; |
||||
insert into t(a)values(4); |
|||||
select * from t; 1,2,3,4(脏读:读取到了未提交的事务中的数据) |
select * from t; 1,2,3(解决脏读) |
select * from t; 1,2,3 |
select * from t; 1,2,3 |
select * from t; 1,2,3 |
|
commit; |
|||||
select * from t: 1,2,3,4 |
select * from t: 1,2,3,4 |
select * from t: 1,2,3,4 (与上面的不在一个事务中,所以读到为事务提交后最新的,所以可读到4) |
select * from t: 1,2,3(反复读:因为与上面的在一个事务中。所以仅仅读到事务開始事务的数据,也就是反复读) |
select * from t: 1,2,3,4 |
|
commit(提交事务。以下的就是一个新的事务。所以能够读到事务提交以后的最新数据) |
|||||
select * from t: 1,2,3,4 |
|||||
READ-UNCOMMITTED 会产生脏读,基本非常少适用于实际场景,所以基本不使用。 |
实验二:測试READ-COMMITTED与REPEATABLE-READ
事务A |
事务B READ-COMMITTED |
事务C REPEATABLE-READ |
set autocommit =0; |
||
start transaction ; |
start transaction; |
start transaction; |
insert into t(a)values(4); |
||
select * from t; 1,2,3 |
select * from t; 1,2,3 |
|
commit; |
||
select * from t: 1,2,3,4 |
select * from t: 1,2,3(反复读:因为与上面的在一个事务中,所以仅仅读到事务開始事务的数据,也就是反复读) |
|
commit(提交事务,以下的就是一个新的事务,所以能够读到事务提交以后的最新数据) |
||
select * from t: 1,2,3,4 |
||
REPEATABLE-READ能够确保一个事务中读取的数据是可反复的。也就是同样的读取(第一次读取以后。即使其它事务已经提交新的数据,同一个事务中再次select也并不会被读取)。 READ-COMMITTED仅仅是确保读取最新事务已经提交的数据。 |
当然数据的可见性都是对不同事务来说的,同一个事务,都是能够读到此事务中最新数据的。
start transaction;
insert into t(a) values (4);
select * from t;
1,2,3,4;
insert into t(a) values (5);
select * from t;
1,2,3,4,5;
实验三:測试SERIALIZABLE事务对其它的影响
事务A SERIALIZABLE |
事务B READ-UNCOMMITTED |
事务C READ-COMMITTED, |
事务D REPEATABLE-READ |
事务E SERIALIZABLE |
set autocommit =0; |
||||
start transaction ; |
start transaction; |
|||
select a from t union all select sleep(1000) from dual; |
||||
insert into t(a)values(5); |
insert into t(a)values(5); |
insert into t(a)values(5); |
insert into t(a)values(5); |
|
ERROR 1205 (HY000): Lock wait timeout exceeded; try restarting transaction |
ERROR 1205 (HY000): Lock wait timeout exceeded; try restarting transaction |
ERROR 1205 (HY000): Lock wait timeout exceeded; try restarting transaction |
ERROR 1205 (HY000): Lock wait timeout exceeded; try restarting transaction |
|
SERIALIZABLE 串行化运行,导致全部其它事务不得不等待事务A结束才行能够运行,这里特意使用了sleep函数,直接导致事务B,C,D,E等待事务A持有释放的锁。 因为我sleep了1000秒,而innodb_lock_wait_timeout为120s。所以120s到了就报错HY000错误。 |
||||
SERIALIZABLE是相当严格的串行化运行模式。无论是读还是写。都会影响其它读取同样的表的事务。是严格的表级读写排他锁。也就失去了innodb引擎的长处。实际应用非常少。 |
实验四:幻读
一些文章写到InnoDB的可反复读避免了“幻读”(phantom
read),这个说法并不准确。
做个试验:(下面全部试验要注意存储引擎和隔离级别)
mysql>show create table t_bitfly\G;
CREATE TABLE `t_bitfly` (
`id` bigint(20) NOT NULL default '0',
`value` varchar(32) default NULL,
PRIMARY KEY (`id`)
) ENGINE=InnoDB DEFAULT CHARSET=gbk
mysql>select @@global.tx_isolation, @@tx_isolation;
+-----------------------+-----------------+
| @@global.tx_isolation | @@tx_isolation |
+-----------------------+-----------------+
| REPEATABLE-READ | REPEATABLE-READ |
+-----------------------+-----------------+
试验4-1:
SessionA Session B START TRANSACTION; START TRANSACTION; SELECT * FROM t_bitfly;
empty set
INSERT INTO t_bitfly VALUES (1, 'a'); SELECT * FROM t_bitfly;
empty set
COMMIT; SELECT * FROM t_bitfly;
empty set INSERT INTO t_bitfly VALUES (1, 'a');
ERROR 1062 (23000):
Duplicate entry '1' for key 1
v (shit, 刚刚明明告诉我没有这条记录的)
如此就出现了幻读,以为表里没有数据,事实上数据已经存在了。傻乎乎的提交后,才发现数据冲突了。
试验4-2:
SessionA Session B START TRANSACTION; START TRANSACTION; SELECT * FROM t_bitfly;
+------+-------+
| id | value |
+------+-------+
| 1 |a |
+------+-------+
INSERT INTO t_bitfly VALUES (2, 'b'); SELECT * FROM t_bitfly;
+------+-------+
| id | value |
+------+-------+
| 1 |a |
+------+-------+
COMMIT; SELECT * FROM t_bitfly;
+------+-------+
| id | value |
+------+-------+
| 1 |a |
+------+-------+ UPDATE t_bitfly SET value='z';
Rows matched: 2 Changed:2 Warnings: 0
(怎么多出来一行) SELECT * FROM t_bitfly;
+------+-------+
| id | value |
+------+-------+
| 1 |z |
| 2 |z |
+------+-------+
本事务中第一次读取出一行,做了一次更新后。还有一个事务里提交的数据就出现了。也能够看做是一种幻读。
------
那么,InnoDB指出的能够避免幻读是怎么回事呢?
http://dev.mysql.com/doc/refman/5.0/en/innodb-record-level-locks.html
By default, InnoDB operatesin REPEATABLE READ transaction isolation level and with the innodb_locks_unsafe_for_binlogsystem variable disabled. In this case, InnoDB uses next-key locks for searchesand
index scans, which prevents phantom rows (see Section 13.6.8.5, “Avoidingthe Phantom Problem Using Next-Key Locking”).
准备的理解是,当隔离级别是可反复读。且禁用innodb_locks_unsafe_for_binlog的情况下,在搜索和扫描index的时候使用的next-keylocks能够避免幻读。
关键点在于,是InnoDB默认对一个普通的查询也会加next-key locks。还是说须要应用自己来加锁呢?假设单看这一句,可能会以为InnoDB对普通的查询也加了锁。假设是。那和序列化(SERIALIZABLE)的差别又在哪里呢?
MySQL manual里另一段:
13.2.8.5. Avoiding the PhantomProblem Using Next-Key Locking (http://dev.mysql.com/doc/refman/5.0/en/innodb-next-key-locking.html)
Toprevent phantoms, InnoDB
usesan algorithm called next-key locking that combinesindex-row locking with gap
locking.
Youcan use next-key locking to implement a uniqueness check in your application:If you read your data in share mode and do not see a duplicate for a row youare going to insert, then you can safely insert
your row and know that thenext-key lock set on the successor of your row during the read prevents anyonemeanwhile inserting a duplicate for your row. Thus, the next-key lockingenables you to “lock” the nonexistence of something in your table.
我的理解是说,InnoDB提供了next-key locks,但须要应用程序自己去加锁。
manual里提供一个样例:
SELECT * FROM child WHERE id> 100 FOR UPDATE;
这样,InnoDB会给id大于100的行(假如child表里有一行id为102)。以及100-102,102+的gap都加上锁。
能够使用showinnodb status来查看是否给表加上了锁。
再看一个实验,要注意,表t_bitfly里的id为主键字段。
实验4-3:
Session A Session B START TRANSACTION; START TRANSACTION; SELECT * FROM t_bitfly
WHERE id<=1
FOR UPDATE;
+------+-------+
| id | value |
+------+-------+
| 1 | a |
+------+-------+
INSERT INTO t_bitfly
VALUES (2, 'b');
Query OK, 1 row affected SELECT * FROM t_bitfly;
+------+-------+
| id | value |
+------+-------+
| 1 | a |
+------+-------+
INSERT INTO t_bitfly
VALUES (0, '0');
(waiting for lock ...
then timeout)
ERROR 1205 (HY000):
Lock wait timeout exceeded;
try restarting transaction SELECT * FROM t_bitfly;
+------+-------+
| id | value |
+------+-------+
| 1 | a |
+------+-------+
COMMIT; SELECT * FROM t_bitfly;
+------+-------+
| id | value |
+------+-------+
| 1 | a |
+------+-------+
能够看到。用id<=1加的锁,仅仅锁住了id<=1的范围,能够成功加入id为2的记录,加入id为0的记录时就会等待锁的释放。
MySQL manual里对可反复读里的锁的详解:
http://dev.mysql.com/doc/refman/5.0/en/set-transaction.html#isolevel_repeatable-read
Forlocking reads (SELECT
with FORUPDATE
or LOCK
),
IN SHARE MODEUPDATE
, and DELETE
statements,
lockingdepends on whether the statement uses a unique index with a unique searchcondition, or a range-type search condition. For a unique index with a uniquesearch condition, InnoDB
locksonly
the index record found, not the gap before it. For other searchconditions, InnoDB
locksthe index range scanned, using gap locks or next-key (gap plus index-record)locks to block
insertions by other sessions into the gaps covered by the range.
------
一致性读和提交读,先看实验。
实验4-4:
SessionA Session B START TRANSACTION; START TRANSACTION; SELECT * FROM t_bitfly;
+----+-------+
| id | value |
+----+-------+
| 1 |a |
+----+-------+
INSERT INTO t_bitfly VALUES (2, 'b'); COMMIT; SELECT * FROM t_bitfly;
+----+-------+
| id | value |
+----+-------+
| 1 |a |
+----+-------+ SELECT * FROM t_bitfly LOCK IN SHARE MODE;
+----+-------+
| id | value |
+----+-------+
| 1 |a |
| 2 |b |
+----+-------+ SELECT * FROM t_bitfly FOR UPDATE;
+----+-------+
| id | value |
+----+-------+
| 1 |a |
| 2 |b |
+----+-------+ SELECT * FROM t_bitfly;
+----+-------+
| id | value |
+----+-------+
| 1 |a |
+----+-------+
假设使用普通的读。会得到一致性的结果。假设使用了加锁的读,就会读到“最新的”“提交”读的结果。
本身,可反复读和提交读是矛盾的。在同一个事务里。假设保证了可反复读,就会看不到其它事务的提交,违背了提交读;假设保证了提交读,就会导致前后两次读到的结果不一致,违背了可反复读。
能够这么讲,InnoDB提供了这种机制。在默认的可反复读的隔离级别里。能够使用加锁读去查询最新的数据。
http://dev.mysql.com/doc/refman/5.0/en/innodb-consistent-read.html
Ifyou want to see the “freshest” state of the database, you should use either theREAD COMMITTED isolation level or a locking read:
SELECT * FROM t_bitfly LOCK IN SHARE MODE;
------
结论:MySQLInnoDB的可反复读并不保证避免幻读,须要应用使用加锁读来保证。而这个加锁度使用到的机制就是next-keylocks。
====================
结尾 ====================
文章幻读部分直接转载了bitfly的文章: http://blog.bitfly.cn/post/mysql-innodb-phantom-read/
转载请说明出处。包含參考文章出处。
新博客已经移动到GitHub上,博客地址 http://utf7.github.io/ 欢迎关注
MySQL InnoDB四个事务级别 与 脏读、不反复读、幻读的更多相关文章
- 数据库事务隔离级别 - 分析脏读 & 不可重复读 & 幻读
一 数据库事务的隔离级别 数据库事务的隔离级别有4个,由低到高依次为Read uncommitted .Read committed .Repeatable read .Serializable ,这 ...
- spring事务隔离级别以及脏读 不可重复读 幻影读
隔离级别 声明式事务的第二个方面是隔离级别.隔离级别定义一个事务可能受其他并发事务活动活动影响的程度.另一种考虑一个事务的隔离级别的方式,是把它想象为那个事务对于事物处理数据的自私程度. 在一个典型的 ...
- MySQL的四种事务隔离级别
本文实验的测试环境:Windows 10+cmd+MySQL5.6.36+InnoDB 一.事务的基本要素(ACID) 1.原子性(Atomicity):事务开始后所有操作,要么全部做完,要么全部不做 ...
- [转载] MySQL的四种事务隔离级别
本文实验的测试环境:Windows 10+cmd+MySQL5.6.36+InnoDB 一.事务的基本要素(ACID) 1.原子性(Atomicity):事务开始后所有操作,要么全部做完,要么全部不做 ...
- MySQL的四种事务隔离级别【转】
本文实验的测试环境:Windows 10+cmd+MySQL5.6.36+InnoDB 一.事务的基本要素(ACID) 1.原子性(Atomicity):事务开始后所有操作,要么全部做完,要么全部不做 ...
- Mysql事务,并发问题,锁机制-- 幻读、不可重复读--专题
1.什么是事务 事务是一条或多条数据库操作语句的组合,具备ACID,4个特点. 原子性:要不全部成功,要不全部撤销 隔离性:事务之间相互独立,互不干扰 一致性:数据库正确地改变状态后,数据库的一致性约 ...
- MySQL InnoDB中的事务隔离级别和锁的关系
前言: 我们都知道事务的几种性质,数据库为了维护这些性质,尤其是一致性和隔离性,一般使用加锁这种方式.同时数据库又是个高并发的应用,同一时间会有大量的并发访问,如果加锁过度,会极大的降低并发处理能力. ...
- 浅析Mysql InnoDB存储引擎事务原理
浅析Mysql InnoDB存储引擎事务原理 大神:http://blog.csdn.net/tangkund3218/article/details/47904021
- Mysql事务,并发问题,锁机制-- 幻读、不可重复读(转)
1.什么是事务 事务是一条或多条数据库操作语句的组合,具备ACID,4个特点. 原子性:要不全部成功,要不全部撤销 隔离性:事务之间相互独立,互不干扰 一致性:数据库正确地改变状态后,数据库的一致性约 ...
随机推荐
- Halcon算子翻译——assign
名称 assign-为控制变量分配一个新的值 用法 assign( : : Input : Result) 描述 为控制变量分配一个新的值. 在全文编辑器中,只需用:=就可以进行赋值,例如: u : ...
- Linux常用命令100个用法
平时用linux时,我有一个习惯就是把遇到的,比较有用,并且容易忘的命令,放到一个文本文件中,没事的时候可以拿出来看看,这样可以加深映像,时间长了这些命令的用法基本上都能掌握了.以下是100个用法,有 ...
- 使用c#操作txt
如何读取文本文件内容: 在本文介绍的程序中,是把读取的文本文件,用一个richTextBox组件显示出来.要读取文本文件,必须使用到"StreamReader"类,这个类是由名字空 ...
- spring配置文件一般结构
xml schema:schema在文档根节点当中通过xmlns对文档当中的命名空间进行申明,第三行代码定义了默认命名空间用于spring bean的定义.xsi命名空间用于为每个文档中指定 ...
- netty 入门二 (传输bytebuf 或者pojo)
基于流的数据传输:在基于流的传输(如TCP / IP)中,接收的数据被存储到套接字接收缓冲器中. 不幸的是,基于流的传输的缓冲区不是数据包的队列,而是字节队列. 这意味着,即使您将两个消息作为两个独立 ...
- 《 iPhone X ARKit Face Tracking 》
欢迎大家前往腾讯云社区,获取更多腾讯海量技术实践干货哦~ 本文来自于腾讯Bugly公众号(weixinBugly), 作者:jennysluo,未经作者同意,请勿转载,原文地址:http://mp.w ...
- Did you forget about DBModel.InitializeModel the model [AAAdm] ?
AIO5安装完毕后登陆出现以下报错:Did you forget about DBModel.InitializeModel the model [AAAdm] ? 说明: 执行当前 Web 请求期间 ...
- DocsBuilderGUI 工具使用介绍
- C#常见错误解决方法
1.能提供Visual Studio开发工具包吗? 解决方法: Visual Studio 2017开发环境下载地址: https://www.visualstudio.com/zh-hans/dow ...
- php条件语句(二)
switch 语句用于根据多个不同条件执行不同动作. PHP Switch 语句 如果您希望有选择地执行若干代码块之一,请使用 switch 语句. 语法 switch (n){case label1 ...