POJ1006: 中国剩余定理的完美演绎(非原创)
问题描述
人自出生起就有体力,情感和智力三个生理周期,分别为23,28和33天。一个周期内有一天为峰值,在这一天,人在对应的方面(体力,情感或智力)表现最好。通常这三个周期的峰值不会是同一天。现在给出三个日期,分别对应于体力,情感,智力出现峰值的日期。然后再给出一个起始日期,要求从这一天开始,算出最少再过多少天后三个峰值同时出现。
问题分析
首先我们要知道,任意两个峰值之间一定相距整数倍的周期。假设一年的第N天达到峰值,则下次达到峰值的时间为N+Tk(T是周期,k是任意正整数)。所以,三个峰值同时出现的那一天(S)应满足
S = N1 + T1*k1 = N2 + T2*k2 = N3 + T3*k3
N1,N2,N3分别为为体力,情感,智力出现峰值的日期, T1,T2,T3分别为体力,情感,智力周期。 我们需要求出k1,k2,k3三个非负整数使上面的等式成立。
想直接求出k1,k2,k3貌似很难,但是我们的目的是求出S, 可以考虑从结果逆推。根据上面的等式,S满足三个要求:除以T1余数为N1,除以T2余数为N2,除以T3余数为N3。这样我们就把问题转化为求一个最小数,该数除以T1余N1,除以T2余N2,除以T3余N3。这就是著名的中国剩余定理,我们的老祖宗在几千年前已经对这个问题想出了一个精妙的解法。依据此解法的算法,时间复杂度可达到O(1)。下面就介绍一下中国剩余定理。
中国剩余定理介绍
在《孙子算经》中有这样一个问题:“今有物不知其数,三三数之剩二(除以3余2),五五数之剩三(除以5余3),七七数之剩二(除以7余2),问物几何?”这个问题称为“孙子问题”,该问题的一般解法国际上称为“中国剩余定理”。具体解法分三步:
- 找出三个数:从3和5的公倍数中找出被7除余1的最小数15,从3和7的公倍数中找出被5除余1 的最小数21,最后从5和7的公倍数中找出除3余1的最小数70。
- 用15乘以2(2为最终结果除以7的余数),用21乘以3(3为最终结果除以5的余数),同理,用70乘以2(2为最终结果除以3的余数),然后把三个乘积相加(15*2+21*3+70*2)得到和233。
- 用233除以3,5,7三个数的最小公倍数105,得到余数23,即233%105=23。这个余数23就是符合条件的最小数。
就这么简单。我们在感叹神奇的同时不禁想知道古人是如何想到这个方法的,有什么基本的数学依据吗?
中国剩余定理分析
我们将“孙子问题”拆分成几个简单的小问题,从零开始,试图揣测古人是如何推导出这个解法的。
首先,我们假设n1是满足除以3余2的一个数,比如2,5,8等等,也就是满足3*k+2(k>=0)的一个任意数。同样,我们假设n2是满足除以5余3的一个数,n3是满足除以7余2的一个数。
有了前面的假设,我们先从n1这个角度出发,已知n1满足除以3余2,能不能使得 n1+n2 的和仍然满足除以3余2?进而使得n1+n2+n3的和仍然满足除以3余2?
这就牵涉到一个最基本数学定理,如果有a%b=c,则有(a+kb)%b=c(k为非零整数),换句话说,如果一个除法运算的余数为c,那么被除数与k倍的除数相加(或相减)的和(差)再与除数相除,余数不变。这个是很好证明的。
以此定理为依据,如果n2是3的倍数,n1+n2就依然满足除以3余2。同理,如果n3也是3的倍数,那么n1+n2+n3的和就满足除以3余2。这是从n1的角度考虑的,再从n2,n3的角度出发,我们可推导出以下三点:
- 为使n1+n2+n3的和满足除以3余2,n2和n3必须是3的倍数。
- 为使n1+n2+n3的和满足除以5余3,n1和n3必须是5的倍数。
- 为使n1+n2+n3的和满足除以7余2,n1和n2必须是7的倍数。
因此,为使n1+n2+n3的和作为“孙子问题”的一个最终解,需满足:
- n1除以3余2,且是5和7的公倍数。
- n2除以5余3,且是3和7的公倍数。
- n3除以7余2,且是3和5的公倍数。
所以,孙子问题解法的本质是从5和7的公倍数中找一个除以3余2的数n1,从3和7的公倍数中找一个除以5余3的数n2,从3和5的公倍数中找一个除以7余2的数n3,再将三个数相加得到解。在求n1,n2,n3时又用了一个小技巧,以n1为例,并非从5和7的公倍数中直接找一个除以3余2的数,而是先找一个除以3余1的数,再乘以2。
这里又有一个数学公式,如果a%b=c,那么(a*k)%b=a%b+a%b+…+a%b=c+c+…+c=kc(k>0),也就是说,如果一个除法的余数为c,那么被除数的k倍与除数相除的余数为kc。展开式中已证明。
最后,我们还要清楚一点,n1+n2+n3只是问题的一个解,并不是最小的解。如何得到最小解?我们只需要从中最大限度的减掉掉3,5,7的公倍数105即可。道理就是前面讲过的定理“如果a%b=c,则有(a-kb)%b=c”。所以(n1+n2+n3)%105就是最终的最小解。
总结
经过分析发现,中国剩余定理的孙子解法并没有什么高深的技巧,就是以下两个基本数学定理的灵活运用:
- 如果 a%b=c , 则有 (a+kb)%b=c (k为非零整数)。
- 如果 a%b=c,那么 (a*k)%b=kc (k为大于零的整数)。
#include <iostream>
#include<cstdio>
#include<cstring>
using namespace std; void exgcd(long long a,long long b,long long &d,long long &x,long long &y)
{
if(b==)
{
x=;
y=;
d=a;
return;
}
exgcd(b,a%b,d,x,y);
long long temp=x;
x=y;
y=temp-(a/b)*y;
}
long long getniyuan(long long b,long long m)
{
long long ans,gc,y;
exgcd(b,m,gc,ans,y);
return (ans%m+m)%m;
}
int main()
{
long long e,i,p,d,ans,t=;
while(scanf("%lld%lld%lld%lld",&p,&e,&i,&d))
{
if(p==-&&e==-&&i==-&&d==-)
break;
ans=**p*getniyuan(*,)+**e*getniyuan(*,)+**i*getniyuan(*,);
ans=(ans%+)%;
ans=(ans-d+)%;
if(ans==)
ans=;
cout<<"Case "<<++t<<": the next triple peak occurs in "<<ans<<" days."<<endl;
}
return ;
}
POJ1006: 中国剩余定理的完美演绎(非原创)的更多相关文章
- POJ1006: 中国剩余定理的完美演绎
POJ1006: 中国剩余定理的完美演绎 问题描述 人自出生起就有体力,情感和智力三个生理周期,分别为23,28和33天.一个周期内有一天为峰值,在这一天,人在对应的方面(体力,情感或智力)表现最 ...
- [转]POJ1006: 中国剩余定理的完美演绎
Biorhythms Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 117973 Accepted: 37026 Des ...
- Biorhythms(poj1006+中国剩余定理)
Biorhythms Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 117973 Accepted: 37026 Des ...
- poj1006 中国剩余定理&&中国剩余定理解析
poj 1006 题的思路不是很难的,可以转化数学式: 现设 num 是下一个相同日子距离开始的天数 p,e,i,d 如题中所设! 那么就可以得到三个式子:( num + d ) % 23 == p: ...
- POJ 2891 中国剩余定理的非互质形式
中国剩余定理的非互质形式 任意n个表达式一对对处理,故只需处理两个表达式. x = a(mod m) x = b(mod n) km+a = b (mod n) km = (a-b)(mod n) 利 ...
- poj1006生理周期(中国剩余定理)
/* 中国剩余定理可以描述为: 若某数x分别被d1..….dn除得的余数为r1.r2.….rn,则可表示为下式: x=R1r1+R2r2+…+Rnrn+RD 其中R1是d2.d3.….dn的公倍数,而 ...
- POJ1006 - Biorhythms(中国剩余定理)
题目大意 略...有中文... 题解 就是解同余方程组 x≡(p-d)(mod 23) x≡(e-d)(mod 28) x≡(i-d)(mod 33) 最简单的中国剩余定理应用.... 代码: #in ...
- poj1006 ( hdu1370 ):中国剩余定理裸题
裸题,没什么好说的 第一个中国剩余定理 写暴力都过了..可见这题有多水 代码: #include<iostream> #include<stdio.h> #include< ...
- [POJ1006]生理周期 (中国剩余定理)
蒟蒻并不会中国剩余定理 交的时候还出现了PE的错误 下面是AC代码 #include<iostream> #include<cstdio> using namespace st ...
随机推荐
- 在vs中打开cuda工程
以往都是在linux环境下使用cuda,编写cuda程序,因为一篇论文的源码要求用win系统+vs,首次在vs中打开.编译cuda工程,遇到一些阻碍,特此记录. 我的计算机环境是win10,cuda7 ...
- 会话管理(Cookie/Session技术)
什么是会话:用户打开浏览器,点击多个超链接,访问服务器的多个web资源,然后关闭浏览器,整个过程就称为一个会话: 会话过程需要解决的问题:每个用户在使用浏览器与服务器进行会话的过程中,都可能会产生一些 ...
- trimpath javascript的学习
TrimPath是javascript模板引擎. 这几天有一个项目涉及到trimpath这个框架,所以就花了一点时间研究了一下,这个框架和别的javascript框架不太一样的地方就是模板的概念,就是 ...
- Grunt usemin
yeoman/grunt-usemin 用来将 HTML 文件中(或者 templates/views)中没有优化的 script 和 stylesheets 替换为优化过的版本. usemin 暴露 ...
- ubuntu 软件安装配置使用总结(由xmind:Depends:java8-runtime but is not installed引出)
ubuntu 软件安装总结(由xmind:Depends:java8-runtime but is not installed引出) 不知道抽什么风,这几天PC上又用起了linux操作系统.其实之前断 ...
- Project下载提示检索 COM 类工厂中 CLSID 为 {36D27C48-A1E8-11D3-BA55-00C04F72F325} 的组件失败
做后台系统导出Project时,部署到服务器提示:检索 COM 类工厂中 CLSID 为 {36D27C48-A1E8-11D3-BA55-00C04F72F325} 的组件失败,原因是出现以下错误: ...
- CodeFirst的一些操作!!
CodeFirst的一些操作!! 转载 2016-08-05 21:03:32 1 首先是codefirst怎么做,这个首先肯定要引入EntityFramework,然后在model中创建实体类,例如 ...
- 华为C8812E 手机logcat不出日志解决方案
最近在弄Android,使用的测试机为华为C8812E,无论如何也打印不出来日志,在网上搜索了一圈,尝试了很久终于解决了,留作备忘. 华为手机logcat不出日志解决方案 进入拨号界面输入:*#*#2 ...
- [Python Web]部署完网站需要做的一些后续工作
简述 今天上线了一个简单的 Page,没有什么功能就是一个展示页. 但是,我发现部署完,上线后,还要弄不少东西.下面就是我记录.整理的一些上线网站基本都会用到的网站和配置. 加入统计代码 这个是必做的 ...
- Python 多进程概述
multiprocessing python中的多线程其实并不是真正的多线程,如果想要充分地使用多核CPU的资源,在python中大部分情况需要使用多进程.Python提供了非常好用的多进程包mult ...