55 Jump Game i && 45 Jump Game ii
Jump Game
Problem statement:
Given an array of non-negative integers, you are initially positioned at the first index of the array.
Each element in the array represents your maximum jump length at that position.
Determine if you are able to reach the last index.
For example:
A = [2,3,1,1,4]
, return true
.
A = [3,2,1,0,4]
, return false
.
Analysis:
There are two solutions for this problem, one is greedy, another is dynamic programming. The main difference is the direction.
Solution one:
Greedy is the best solution for this problem, it is always forwarding(AC) O(n).
- Loop the whole array
- Keep a right most position where I can get, update it at each index.
- if right most position is always greater than current index or it is already exceed the last position of array, return true since we can get the last position
- Once current index is greater than right most position, return false, since there is already no way to get there.
The code is as following:
class Solution {
public:
bool canJump(vector<int>& nums) {
if(nums.empty()){
return false;
} // keep a indicator for current right most position we can reach
int right_most = ; // loop to enumrate all elements
for(int ix = ; ix < nums.size(); ix++){
// if current element already exceed the right most position
// return false
if(right_most < ix){
return false;
} else {
// we already could reache the last element
if(ix + nums[ix] >= nums.size() - ){
return true;
} else {
// otherwise, update the right most position
right_most = max(ix + nums[ix], right_most);
}
}
}
return false;
}
};
Solution two(NOT AC):
Dynamic programming O(n*n)
For dynamic programming, we looks back, for each element, we enumerate all the element whose index is lower than it, and check if it is reachable.
class Solution {
public:
// dynamic programming solution
bool canJump(vector<int>& nums) {
if (nums.empty()) {
return false;
}
int size = nums.size();
vector<bool> true_table(size, false);
true_table[] = true;
for(int i = ; i < nums.size(); i++){
for(int j = ; j < i; j++){
if(true_table[j] && nums[j] + j >= i){
true_table[i] = true;
break;
}
}
}
return true_table[size - ];
}
};
--------------------------------- divide line --------------------------------------------
Jump Game ii
Problem Statement:
Given an array of non-negative integers, you are initially positioned at the first index of the array.
Each element in the array represents your maximum jump length at that position.
Your goal is to reach the last index in the minimum number of jumps.
For example:
Given array A = [2,3,1,1,4]
The minimum number of jumps to reach the last index is 2
. (Jump 1
step from index 0 to 1, then 3
steps to the last index.)
Note: You can assume that you can always reach the last index.
Analysis:
The main difference between jump game i && ii is that we should keep a minimum jump array for each element and update it for each element.
Solution one: Greedy
This is the accepted solution.
Solution two: Dynamic programming(NOT AC)
class Solution {
public:
int jump(vector<int>& nums) {
if(nums.empty()){
return ;
}
int size = nums.size();
vector<bool> can_jump(size, false);
vector<int> min_jump(size, INT_MAX);
// initialize start status
can_jump[] = true;
min_jump[] = ;
// dynamic programming
for(int i = ; i < nums.size(); i++){
for(int j = ; j < i; j++){
if(can_jump[j] && nums[j] + j >= i){
can_jump[i] = true;
min_jump[i] = min(min_jump[i], min_jump[j] + );
}
}
}
// return end status
return min_jump[size - ];
}
};
Solution two: Greedy(AC)
we keep two variables, the first one is the most right position in current jump, the second one is the right most position in next jump.
Just one loop to get the final solution:
class Solution {
public:
int jump(vector<int>& nums) {
// initialize
if(nums.size() < ){
return ;
}
// variables
int cur_jump_right_most = nums[];
int next_jump_right_most = ;
int min_jump = ;
if(cur_jump_right_most >= nums.size() - ){
return min_jump;
}
// O(n)
for(int ix = ; ix < nums.size(); ix++){
if(ix > cur_jump_right_most){
// at boundary
// update the cur_jump_right_most position before next_jump_right_most
cur_jump_right_most = next_jump_right_most;
min_jump++;
}
next_jump_right_most = max(next_jump_right_most, nums[ix] + ix);
if(next_jump_right_most >= nums.size() - ){
return ++min_jump;
}
}
return min_jump;
}
};
55 Jump Game i && 45 Jump Game ii的更多相关文章
- leetcode 55. Jump Game、45. Jump Game II(贪心)
55. Jump Game 第一种方法: 只要找到一个方式可以到达,那当前位置就是可以到达的,所以可以break class Solution { public: bool canJump(vecto ...
- leetcode 55. 跳跃游戏 及 45. 跳跃游戏 II
55. 跳跃游戏 问题描述 给定一个非负整数数组,你最初位于数组的第一个位置. 数组中的每个元素代表你在该位置可以跳跃的最大长度. 判断你是否能够到达最后一个位置. 示例 1: 输入: [2,3,1, ...
- Leetcode 55. Jump Game & 45. Jump Game II
55. Jump Game Description Given an array of non-negative integers, you are initially positioned at t ...
- [Leetcode][Python]45: Jump Game II
# -*- coding: utf8 -*-'''__author__ = 'dabay.wang@gmail.com' 45: Jump Game IIhttps://oj.leetcode.com ...
- Leetcode 45. Jump Game II(贪心)
45. Jump Game II 题目链接:https://leetcode.com/problems/jump-game-ii/ Description: Given an array of non ...
- LeetCode 45. 跳跃游戏 II | Python
45. 跳跃游戏 II 题目来源:https://leetcode-cn.com/problems/jump-game-ii 题目 给定一个非负整数数组,你最初位于数组的第一个位置. 数组中的每个元素 ...
- Java实现 LeetCode 45 跳跃游戏 II(二)
45. 跳跃游戏 II 给定一个非负整数数组,你最初位于数组的第一个位置. 数组中的每个元素代表你在该位置可以跳跃的最大长度. 你的目标是使用最少的跳跃次数到达数组的最后一个位置. 示例: 输入: [ ...
- [leetcode] 45. 跳跃游戏 II(Java)(动态规划)
45. 跳跃游戏 II 动态规划 此题可以倒着想. 看示例: [2,3,1,1,4] 我们从后往前推,对于第4个数1,跳一次 对于第3个数1,显然只能跳到第4个数上,那么从第3个数开始跳到最后需要两次 ...
- [LeetCode#55, 45]Jump Game, Jump Game II
The problem: Given an array of non-negative integers, you are initially positioned at the first inde ...
随机推荐
- 第一章Python起步
1.1搭建编程环境 编程环境的正确搭建很重要,一定要参考先搭配好环境变量,不然用着会很麻烦,在这里推荐使用工具pycharm,亿图图示画流程图,一定要正确安装,搭配好环境变量,后面要添加很多模块,前期 ...
- JAVA 类总结
JAVA 类总结 最近看了遍java内部类相关的一些内容,做一些总结.与个人博客 zhiheng.me 同步发布,标题: JAVA 类总结. 顶级类与嵌套类 定义在某个类(或接口,下同)内部的类,称为 ...
- rgba()和opacity的使用
rgba()表示 红 绿 蓝 alpha ,W3C指在原有的rgb颜色模型之后增加了 “alpha”参数,“可以让制定的颜色透明化”(rgb()上扩展的,其只可以设置颜色,而不能使设置的颜色透明化) ...
- Linux简介与厂商版本上
Linux简介与厂商版本 作者:Vamei 出处:http://www.cnblogs.com/vamei 欢迎转载,也请保留这段声明.谢谢! 1. Linux简介 Linux可以有狭义和广义两种 ...
- K近邻 Python实现 机器学习实战(Machine Learning in Action)
算法原理 K近邻是机器学习中常见的分类方法之间,也是相对最简单的一种分类方法,属于监督学习范畴.其实K近邻并没有显式的学习过程,它的学习过程就是测试过程.K近邻思想很简单:先给你一个训练数据集D,包括 ...
- 《Python基础教程》第1章读书笔记
# -*- coding:utf-8 -*- x = "hello " y = "world" print x+y print "hello &quo ...
- Azure Messaging-ServiceBus Messaging消息队列技术系列8-服务总线配额
上篇博文中我们介绍了Azure ServiceBus Messaging的消息事务机制: Azure Messaging-ServiceBus Messaging消息队列技术系列7-消息事务(2017 ...
- JQgrid表格的使用
html部分: <div class="tab"> <table id="datatable"></table> ...
- SQL Server数据库的存储过程中定义的临时表,真的有必要显式删除临时表(drop table #tableName)吗?
本文出处:http://www.cnblogs.com/wy123/p/6704619.html 问题背景 在写SQL Server存储过程中,如果存储过程中定义了临时表,有些人习惯在存储过程结束的时 ...
- 【Azure】Azure技能树