An express train to reveries
Sengoku still remembers the mysterious "colourful meteoroids" she discovered with Lala-chan when they were little. In particular, one of the nights impressed her deeply, giving her the illusion that all her fancies would be realized.
On that night, Sengoku constructed a permutation p1, p2, ..., pn of integers from 1 to n inclusive, with each integer representing a colour, wishing for the colours to see in the coming meteor outburst. Two incredible outbursts then arrived, each with n meteorids, colours of which being integer sequences a1, a2, ..., an and b1, b2, ..., bn respectively. Meteoroids' colours were also between 1 and ninclusive, and the two sequences were not identical, that is, at least one i (1 ≤ i ≤ n) exists, such that ai ≠ bi holds.
Well, she almost had it all — each of the sequences a and b matched exactly n - 1 elements in Sengoku's permutation. In other words, there is exactly one i (1 ≤ i ≤ n) such that ai ≠ pi, and exactly one j (1 ≤ j ≤ n) such that bj ≠ pj.
For now, Sengoku is able to recover the actual colour sequences a and b through astronomical records, but her wishes have been long forgotten. You are to reconstruct any possible permutation Sengoku could have had on that night.
The first line of input contains a positive integer n (2 ≤ n ≤ 1 000) — the length of Sengoku's permutation, being the length of both meteor outbursts at the same time.
The second line contains n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ n) — the sequence of colours in the first meteor outburst.
The third line contains n space-separated integers b1, b2, ..., bn (1 ≤ bi ≤ n) — the sequence of colours in the second meteor outburst. At least one i (1 ≤ i ≤ n) exists, such that ai ≠ bi holds.
Output n space-separated integers p1, p2, ..., pn, denoting a possible permutation Sengoku could have had. If there are more than one possible answer, output any one of them.
Input guarantees that such permutation exists.
5
1 2 3 4 3
1 2 5 4 5
1 2 5 4 3
5
4 4 2 3 1
5 4 5 3 1
5 4 2 3 1
4
1 1 3 4
1 4 3 4
1 2 3 4
In the first sample, both 1, 2, 5, 4, 3 and 1, 2, 3, 4, 5 are acceptable outputs.
In the second sample, 5, 4, 2, 3, 1 is the only permutation to satisfy the constraints.
题解:
题目描述有一点恶心,先讲一讲题意。
说白了就是给你两个数列a和b,要你找一个数列c,使得c与a和b都最多只有一个不同的数,这就是为什么第二组样例只能有一组解的原因。
思路就是一个一个找a和b相同的数直接放到c中,然后分别试一试两种情况就可以了。
#include<iostream>
#include<cstdio>
#include<cstring>
#include<cstdlib>
#include<cmath>
#include<algorithm>
#include<queue>
#include<ctime>
#include<stack>
#include<vector>
using namespace std;
int n,a[],b[],c[],vis[];
int cnt1,cnt2,cnt3,cnt4;
int main()
{
int i,j;
scanf("%d",&n);
for(i=; i<=n; i++)
{
scanf("%d",&a[i]);
}
for(i=; i<=n; i++)
{
scanf("%d",&b[i]);
}
memset(c,-,sizeof(c));
for(i=; i<=n; i++)
{
if(a[i]==b[i])
{
if(!vis[a[i]])
{
c[i]=a[i];
vis[a[i]]=;
}
}
}
for(i=; i<=n; i++)
{
if(c[i]==-)
{
if(!cnt1)cnt1=i;
else
{
cnt2=i;
break;
}
}
}
for(i=; i<=n; i++)
{
if(!vis[i])
{
if(!cnt3)cnt3=i;
else
{
cnt4=i;
break;
}
}
}
if(!cnt2)c[cnt1]=cnt3;
else
{
int ans1=,ans2=;
if(a[cnt1]!=cnt3)ans1++;
if(b[cnt1]!=cnt3)ans1++;
if(a[cnt2]!=cnt4)ans2++;
if(b[cnt2]!=cnt4)ans2++;
if(ans1==&&ans2==)
{
c[cnt1]=cnt3;
c[cnt2]=cnt4;
}
else
{
c[cnt2]=cnt3;
c[cnt1]=cnt4;
}
} for(i=; i<=n; i++)
cout<<c[i]<<' ';
return ;
}
An express train to reveries的更多相关文章
- B. An express train to reveries
B. An express train to reveries time limit per test 1 second memory limit per test 256 megabytes inp ...
- Codeforces Round #418 (Div. 2) B. An express train to reveries
time limit per test 1 second memory limit per test 256 megabytes input standard input output standar ...
- codeforces 814B.An express train to reveries 解题报告
题目链接:http://codeforces.com/problemset/problem/814/B 题目意思:分别给定一个长度为 n 的不相同序列 a 和 b.这两个序列至少有 i 个位置(1 ≤ ...
- Codeforces - 814B - An express train to reveries - 构造
http://codeforces.com/problemset/problem/814/B 构造题烦死人,一开始我还记录一大堆信息来构造p数列,其实因为s数列只有两项相等,也正好缺了一项,那就把两种 ...
- CF814B An express train to reveries
思路: 模拟,枚举. 实现: #include <iostream> using namespace std; ; int a[N], b[N], cnt[N], n, x, y; int ...
- #418 Div2 Problem B An express train to reveries (构造 || 全排列序列特性)
题目链接:http://codeforces.com/contest/814/problem/B 题意 : 有一个给出两个含有 n 个数的序列 a 和 b, 这两个序列和(1~n)的其中一个全排列序列 ...
- Codeforces Round #418 (Div. 2) A+B+C!
终判才知道自己失了智.本场据说是chinese专场,可是请允许我吐槽一下题意! A. An abandoned sentiment from past shabi贪心手残for循环边界写错了竟然还过了 ...
- codeforces round 418 div2 补题 CF 814 A-E
A An abandoned sentiment from past 水题 #include<bits/stdc++.h> using namespace std; int a[300], ...
- AtCoder Express(数学+二分)
D - AtCoder Express Time limit : 2sec / Memory limit : 256MB Score : 400 points Problem Statement In ...
随机推荐
- 573. Squirrel Simulation
Problem statement: There's a tree, a squirrel, and several nuts. Positions are represented by the ce ...
- Tp5.0 PHPMailer邮件发送
今天突然想起来邮件发送,就看了一下PHPmailer,其实这个用起来很简单,都是封装好的 https://github.com/PHPMailer/PHPMailer,直接下载下来之后,把他放入TP5 ...
- Docker - 在Ubuntu16.04中安装Docker CE
Get Docker for Ubuntu Check system version root@Ubuntu16:~# uname -a Linux Ubuntu16 4.8.0-36-generic ...
- 记事本app TOP5(个人观点)
1.为知笔记 为知笔记定位于高效率工作笔记,主打工作笔记的移动应用,是目前国内唯一一款"工作笔记"的云笔记类产品.除了常用的笔记功能保存的网页.灵感笔记.重要文档.照片.便签等,为 ...
- hdu1068 Girls and Boys 二分匹配
题目链接: 二分匹配的应用 求最大独立集 最大独立集等于=顶点数-匹配数 本体中由于男孩和女孩的学号是不分开的,所以匹配数应是求得的匹配数/2 代码: #include<iostream> ...
- 【AngularJS中的自定义服务service VS factory VS provider】---它们的区别,你知道么?
在介绍AngularJS自定义服务之前,我们先来了解一下AngularJS~ 学过HTML的人都知道,HTML是一门很好的伪静态文本展示设计的声明式语言,但是,要构建WEB应用的话它就显得乏力了. 而 ...
- EntityFramework6.X之DataAnnotations
DataAnnotations 在web开发中不仅在客户端需要执行验证逻辑,会对会对用户向表单中输入的数据给出一个即时反馈:且在服务器端也需验证逻辑,因为来自网络的信息都是不能信任的.在MVC中通常是 ...
- 第 18 章 高可用设计之 MySQL 监控
前言: 一个经过高可用可扩展设计的 MySQL 数据库集群,如果没有一个足够精细足够强大的监控系统,同样可能会让之前在高可用设计方面所做的努力功亏一篑.一个系统,无论如何设计如何维护,都无法完全避免出 ...
- 开涛spring3(2.3) - IoC的配置使用
2.3.1 XML配置的结构 一般配置文件结构如下: <beans> <import resource=”resource1.xml”/> <bean id=”bean ...
- while循环 操作列表与字典
1.在列表间移动元素 #!/usr/bin/env python #filename=list.py num1 = [1,3,5,7,9,11,13,15] num2 = [] while num1: ...