An express train to reveries
time limit per test 1 second
memory limit per test 256 megabytes
input standard input
output standard output

Sengoku still remembers the mysterious "colourful meteoroids" she discovered with Lala-chan when they were little. In particular, one of the nights impressed her deeply, giving her the illusion that all her fancies would be realized.

On that night, Sengoku constructed a permutation p1, p2, ..., pn of integers from 1 to n inclusive, with each integer representing a colour, wishing for the colours to see in the coming meteor outburst. Two incredible outbursts then arrived, each with n meteorids, colours of which being integer sequences a1, a2, ..., an and b1, b2, ..., bn respectively. Meteoroids' colours were also between 1 and ninclusive, and the two sequences were not identical, that is, at least one i (1 ≤ i ≤ n) exists, such that ai ≠ bi holds.

Well, she almost had it all — each of the sequences a and b matched exactly n - 1 elements in Sengoku's permutation. In other words, there is exactly one i (1 ≤ i ≤ n) such that ai ≠ pi, and exactly one j (1 ≤ j ≤ n) such that bj ≠ pj.

For now, Sengoku is able to recover the actual colour sequences a and b through astronomical records, but her wishes have been long forgotten. You are to reconstruct any possible permutation Sengoku could have had on that night.

Input

The first line of input contains a positive integer n (2 ≤ n ≤ 1 000) — the length of Sengoku's permutation, being the length of both meteor outbursts at the same time.

The second line contains n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ n) — the sequence of colours in the first meteor outburst.

The third line contains n space-separated integers b1, b2, ..., bn (1 ≤ bi ≤ n) — the sequence of colours in the second meteor outburst. At least one i (1 ≤ i ≤ n) exists, such that ai ≠ bi holds.

Output

Output n space-separated integers p1, p2, ..., pn, denoting a possible permutation Sengoku could have had. If there are more than one possible answer, output any one of them.

Input guarantees that such permutation exists.

Examples
input
5
1 2 3 4 3
1 2 5 4 5
output
1 2 5 4 3
input
5
4 4 2 3 1
5 4 5 3 1
output
5 4 2 3 1
input
4
1 1 3 4
1 4 3 4
output
1 2 3 4
Note

In the first sample, both 1, 2, 5, 4, 3 and 1, 2, 3, 4, 5 are acceptable outputs.

In the second sample, 5, 4, 2, 3, 1 is the only permutation to satisfy the constraints.

题解:

题目描述有一点恶心,先讲一讲题意。

说白了就是给你两个数列a和b,要你找一个数列c,使得c与a和b都最多只有一个不同的数,这就是为什么第二组样例只能有一组解的原因。

思路就是一个一个找a和b相同的数直接放到c中,然后分别试一试两种情况就可以了。

#include<iostream>
#include<cstdio>
#include<cstring>
#include<cstdlib>
#include<cmath>
#include<algorithm>
#include<queue>
#include<ctime>
#include<stack>
#include<vector>
using namespace std;
int n,a[],b[],c[],vis[];
int cnt1,cnt2,cnt3,cnt4;
int main()
{
int i,j;
scanf("%d",&n);
for(i=; i<=n; i++)
{
scanf("%d",&a[i]);
}
for(i=; i<=n; i++)
{
scanf("%d",&b[i]);
}
memset(c,-,sizeof(c));
for(i=; i<=n; i++)
{
if(a[i]==b[i])
{
if(!vis[a[i]])
{
c[i]=a[i];
vis[a[i]]=;
}
}
}
for(i=; i<=n; i++)
{
if(c[i]==-)
{
if(!cnt1)cnt1=i;
else
{
cnt2=i;
break;
}
}
}
for(i=; i<=n; i++)
{
if(!vis[i])
{
if(!cnt3)cnt3=i;
else
{
cnt4=i;
break;
}
}
}
if(!cnt2)c[cnt1]=cnt3;
else
{
int ans1=,ans2=;
if(a[cnt1]!=cnt3)ans1++;
if(b[cnt1]!=cnt3)ans1++;
if(a[cnt2]!=cnt4)ans2++;
if(b[cnt2]!=cnt4)ans2++;
if(ans1==&&ans2==)
{
c[cnt1]=cnt3;
c[cnt2]=cnt4;
}
else
{
c[cnt2]=cnt3;
c[cnt1]=cnt4;
}
} for(i=; i<=n; i++)
cout<<c[i]<<' ';
return ;
}

An express train to reveries的更多相关文章

  1. B. An express train to reveries

    B. An express train to reveries time limit per test 1 second memory limit per test 256 megabytes inp ...

  2. Codeforces Round #418 (Div. 2) B. An express train to reveries

    time limit per test 1 second memory limit per test 256 megabytes input standard input output standar ...

  3. codeforces 814B.An express train to reveries 解题报告

    题目链接:http://codeforces.com/problemset/problem/814/B 题目意思:分别给定一个长度为 n 的不相同序列 a 和 b.这两个序列至少有 i 个位置(1 ≤ ...

  4. Codeforces - 814B - An express train to reveries - 构造

    http://codeforces.com/problemset/problem/814/B 构造题烦死人,一开始我还记录一大堆信息来构造p数列,其实因为s数列只有两项相等,也正好缺了一项,那就把两种 ...

  5. CF814B An express train to reveries

    思路: 模拟,枚举. 实现: #include <iostream> using namespace std; ; int a[N], b[N], cnt[N], n, x, y; int ...

  6. #418 Div2 Problem B An express train to reveries (构造 || 全排列序列特性)

    题目链接:http://codeforces.com/contest/814/problem/B 题意 : 有一个给出两个含有 n 个数的序列 a 和 b, 这两个序列和(1~n)的其中一个全排列序列 ...

  7. Codeforces Round #418 (Div. 2) A+B+C!

    终判才知道自己失了智.本场据说是chinese专场,可是请允许我吐槽一下题意! A. An abandoned sentiment from past shabi贪心手残for循环边界写错了竟然还过了 ...

  8. codeforces round 418 div2 补题 CF 814 A-E

    A An abandoned sentiment from past 水题 #include<bits/stdc++.h> using namespace std; int a[300], ...

  9. AtCoder Express(数学+二分)

    D - AtCoder Express Time limit : 2sec / Memory limit : 256MB Score : 400 points Problem Statement In ...

随机推荐

  1. 573. Squirrel Simulation

    Problem statement: There's a tree, a squirrel, and several nuts. Positions are represented by the ce ...

  2. Tp5.0 PHPMailer邮件发送

    今天突然想起来邮件发送,就看了一下PHPmailer,其实这个用起来很简单,都是封装好的 https://github.com/PHPMailer/PHPMailer,直接下载下来之后,把他放入TP5 ...

  3. Docker - 在Ubuntu16.04中安装Docker CE

    Get Docker for Ubuntu Check system version root@Ubuntu16:~# uname -a Linux Ubuntu16 4.8.0-36-generic ...

  4. 记事本app TOP5(个人观点)

    1.为知笔记 为知笔记定位于高效率工作笔记,主打工作笔记的移动应用,是目前国内唯一一款"工作笔记"的云笔记类产品.除了常用的笔记功能保存的网页.灵感笔记.重要文档.照片.便签等,为 ...

  5. hdu1068 Girls and Boys 二分匹配

    题目链接: 二分匹配的应用 求最大独立集 最大独立集等于=顶点数-匹配数 本体中由于男孩和女孩的学号是不分开的,所以匹配数应是求得的匹配数/2 代码: #include<iostream> ...

  6. 【AngularJS中的自定义服务service VS factory VS provider】---它们的区别,你知道么?

    在介绍AngularJS自定义服务之前,我们先来了解一下AngularJS~ 学过HTML的人都知道,HTML是一门很好的伪静态文本展示设计的声明式语言,但是,要构建WEB应用的话它就显得乏力了. 而 ...

  7. EntityFramework6.X之DataAnnotations

    DataAnnotations 在web开发中不仅在客户端需要执行验证逻辑,会对会对用户向表单中输入的数据给出一个即时反馈:且在服务器端也需验证逻辑,因为来自网络的信息都是不能信任的.在MVC中通常是 ...

  8. 第 18 章 高可用设计之 MySQL 监控

    前言: 一个经过高可用可扩展设计的 MySQL 数据库集群,如果没有一个足够精细足够强大的监控系统,同样可能会让之前在高可用设计方面所做的努力功亏一篑.一个系统,无论如何设计如何维护,都无法完全避免出 ...

  9. 开涛spring3(2.3) - IoC的配置使用

    2.3.1  XML配置的结构 一般配置文件结构如下: <beans> <import resource=”resource1.xml”/> <bean id=”bean ...

  10. while循环 操作列表与字典

    1.在列表间移动元素 #!/usr/bin/env python #filename=list.py num1 = [1,3,5,7,9,11,13,15] num2 = [] while num1: ...