Machine and statistical learning wizards are becoming more eager to perform analysis with Spark MLlibrary if this is only possible. It’s trendy, posh, spicy and gives the feeling of doing state of the art machine learning and being up to date with the newest computational trends. It is even more sexy and powerful when computations can be performed on the extraordinarily enormous computation cluster - let’s say 100 machines on YARN hadoop cluster makes you the real data cruncher! In this post I presentsparklyr package (by RStudio), the connector that will transform you from a regular R user, to the supa! data scientist that can invoke Scala code to perform machine learning algorithms on YARN cluster just from RStudio! Moreover, I present how I have extended the interface to K-means procedure, so that now it is also possible to compute cost for that model, which might be beneficial in determining the number of clusters in segmentation problems. Thought about learnig Scala? Leave it - user sparklyr!

If you don’t know much about Spark yet, you can read my April post Answers to FAQ about SparkR for R users - where I explained how could we use SparkR package that is distributed with Spark. Many things (code) might have changed since that time, due to the rapid development caused by great popularity of Spark. Now we can use version 2.0.0 of Spark. If you are migrating from previous versions I suggest you should look at Migration Guide - Upgrading From SparkR 1.6.x to 2.0.

sparklyr basics

This packages is based on sparkapi package that enables to run Spark applications locally or on YARN cluster just from R. It translates R code to bash invocation of spark-shell. It’s biggest advantage is dplyrinterface for working with Spark Data Frames (that might be Hive Tables) and possibility to invoke algorithms from Spark ML library.

Installation of sparklyr, then Spark itself and simple application initiation is described by this code

library(devtools)
install_github('rstudio/sparklyr')
library(sparklyr)
spark_install(version = "2.0.0")
sc <-
spark_connect(master="yarn",
config = list(
default = list(
spark.submit.deployMode= "client",
spark.executor.instances= 20,
spark.executor.memory= "2G",
spark.executor.cores= 4,
spark.driver.memory= "4G")))

One don’t have to specify config by himself, but if this is desired then remember that you could also specify parameters for Spark application with config.yml files so that you can benefit from many profiles (development, production). In version 2.0.0 it is desired to name master yarn instead of yarn-client and passing the deployMode parameter, which is different from version 1.6.x. All available parameters can be found in Running Spark on YARN documentation page.

dplyr and DBI interface on Spark

When connecting to YARN, it is most probable that you would like to use data tables that are stored on Hive. Remember that

Configuration of Hive is done by placing your hive-site.xml, core-site.xml (for security configuration), and hdfs-site.xml (for HDFS configuration) file in conf/.

where conf/ is set as HADOOP_CONF_DIR. Read more about using Hive tables from Spark

If everything is set up and the application runs properly, you can use dplyr interface to provide lazy evaluation for data manipulations. Data are stored on Hive, Spark application runs on YARN cluster, and the code is invoked from R in the simple language of data transformations (dplyr) - everything thanks to sparklyr team great job! Easy example is below

library(dplyr)
# give the list of tables
src_tbls(sc)
# copies iris from R to Hive
iris_tbl <- copy_to(sc, iris, "iris")
# create a hook for data stored on Hive
data_tbl <- tbl(sc, "table_name")
data_tbl2 <- tbl(sc, sql("SELECT * from table_name"))

You can also perform any operation on datasets use by Spark

iris_tbl %>%
select(Petal_Length, Petal_Width) %>%
top_n(40, Petal_Width) %>%
arrange(Petal_Length)

Note that original commas in iris names have been translated to _.

This package also provides interface for functions defined in DBI package

library(DBI)
dbListTables(sc)
dbGetQuery(sc, "use database_name")
data_tbl3 <- dbGetQuery(sc, "SELECT * from table_name")
dbListFields(sc, data_tbl3)

Running Spark ML Machine Learning K-means Algorithm from R

The basic example on how sparklyr invokes Scala code from Spark ML will be presented on K-means algorithm. If you check the code of sparklyr::ml_kmeans function you will see that for inputtbl_spark object, named x and character vector containing features’ names (featuers)

envir <- new.env(parent = emptyenv())
df <- spark_dataframe(x)
sc <- spark_connection(df)
df <- ml_prepare_features(df, features)
tdf <- ml_prepare_dataframe(df, features, ml.options = ml.options, envir = envir)

sparklyr ensures that you have proper connection to spark data frame and prepares features in convenient form and naming convention. At the end it prepares a Spark DataFrame for Spark ML routines.

This is done in a new environment, so that we can store arguments for future ML algorithm and the model itself in its own environment. This is safe and clean solution. You can construct a simple model calling a Spark ML class like this

envir$model <- "org.apache.spark.ml.clustering.KMeans"
kmeans <- invoke_new(sc, envir$model)

which invokes new object of class KMeans on which we can invoke parameters setters to change default parameters like this

model <- kmeans %>%
invoke("setK", centers) %>%
invoke("setMaxIter", iter.max) %>%
invoke("setTol", tolerance) %>%
invoke("setFeaturesCol", envir$features)
# features where set in ml_prepare_dataframe

For an existing object of KMeans class we can invoke its method called fit that is responsible for starting the K-means clustering algorithm

fit <- model %>%
invoke("fit", tdf)

which returns new object on which we can compute, e.g centers of outputted clustering

kmmCenters <- invoke(fit, "clusterCenters")

or the Within Set Sum of Squared Errors (called Cost) (which is mine small contribution #173 )

kmmCost <- invoke(fit, "computeCost", tdf)

This sometimes helps to decide how many clusters should we specify for clustering problem

and is presented in print method for ml_model_kmeans object

iris_tbl %>%
select(Petal_Width, Petal_Length) %>%
ml_kmeans(centers = 3, compute.cost = TRUE) %>%
print() K-means clustering with 3 clusters Cluster centers:
Petal_Width Petal_Length
1 1.359259 4.292593
2 2.047826 5.626087
3 0.246000 1.462000 Within Set Sum of Squared Errors = 31.41289

All that can be better understood if we’ll have a look on Spark ML docuemtnation for KMeans (be carefull not to confuse with Spark MLlib where methods and parameters have different names than those in Spark ML). This enabled me to provide simple update for ml_kmeans() (#179) so that we can specify tol (tolerance) parameter in ml_kmeans() to support tolerance of convergence.

 

inShare37

BioC 2016 Conference Overview and Few Ways of Downloading TCGA Data

Few weeks ago I have a great pleasure of attending BioC 2016: Where Software and Biology Connect Conference at Stanford, where I have learned a lot! It wouldn’t be possible without the scholarship that I received from Bioconductor (organizers), which I deeply appreciate. It was an excellent place for software developers, statisticians and biologists to exchange their experiences and to better explain their work, as the understanding between collaborators in interdisciplinary teams is essential. In this post I present my thoughts and feelings about the event and I share the knowledge that I have learned during the event, i.e. about many ways of downloading The Cancer Genome Atlas data.

转自:http://r-addict.com/2016/08/25/Extending-Sparklyr.html

Extending sparklyr to Compute Cost for K-means on YARN Cluster with Spark ML Library的更多相关文章

  1. KNN 与 K - Means 算法比较

    KNN K-Means 1.分类算法 聚类算法 2.监督学习 非监督学习 3.数据类型:喂给它的数据集是带label的数据,已经是完全正确的数据 喂给它的数据集是无label的数据,是杂乱无章的,经过 ...

  2. 软件——机器学习与Python,聚类,K——means

    K-means是一种聚类算法: 这里运用k-means进行31个城市的分类 城市的数据保存在city.txt文件中,内容如下: BJ,2959.19,730.79,749.41,513.34,467. ...

  3. [C2P3] Andrew Ng - Machine Learning

    ##Advice for Applying Machine Learning Applying machine learning in practice is not always straightf ...

  4. hr员工数据分析(实战)

    hr员工数据分析项目实战 (数据已脱敏) 背景说明 某公司最近公司发生多起重要员工意外离职.部分员工工作缺乏积极性等问题,受hr部门委托,开展数据分析工作. 经与hr部门沟通,确定以下需求: 制定数据 ...

  5. Python Machine Learning: Scikit-Learn Tutorial

    这是一篇翻译的博客,原文链接在这里.这是我看的为数不多的介绍scikit-learn简介而全面的文章,特别适合入门.我这里把这篇文章翻译一下,英语好的同学可以直接看原文. 大部分喜欢用Python来学 ...

  6. Sklearn 速查

    ## 版权所有,转帖注明出处 章节 SciKit-Learn 加载数据集 SciKit-Learn 数据集基本信息 SciKit-Learn 使用matplotlib可视化数据 SciKit-Lear ...

  7. Extending the Yahoo! Streaming Benchmark

    could accomplish with Flink back at Twitter. I had an application in mind that I knew I could make m ...

  8. TensorFlow训练神经网络cost一直为0

    问题描述 这几天在用TensorFlow搭建一个神经网络来做一个binary classifier,搭建一个典型的神经网络的基本思路是: 定义神经网络的layers(层)以及初始化每一层的参数 然后迭 ...

  9. 网络费用流-最小k路径覆盖

    多校联赛第一场(hdu4862) Jump Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Ot ...

随机推荐

  1. 看Lucene源码必须知道的基本规则和算法

    上中学的时候写作文,最喜欢的季节我都是写冬天.虽然是因为写冬天的人比较少,那时确实也是对其他季节没有什么特殊的偏好,反而一到冬天,自己皮肤会变得特别白.但是冬天啊,看到的只有四季常青盆栽:瓜栗(就是发 ...

  2. Android ShellUtils

    Android中执行Shell命令的工具类 public class ShellUtils { public static final String COMMAND_SU = "su&quo ...

  3. ajax多次请求,只执行最后一次的方法

    ajax多次请求,只执行最后一次的方法 有时候点击按钮进行异步请求数据的时候可能网络差,用户会点击很多次,或者页面有很多相同的按钮,参数不同,但是调用的ajax相同,只想得到最后一次结果 我的思路是用 ...

  4. Html 经典布局(二)

    经典布局案例(二): <!DOCTYPE html> <html lang="en"> <head> <meta charset=&quo ...

  5. 如何使用第三方webservice

    webservice地址后加wdls 生成后把文件名改为wdsl 调用方式: 1.添加webservice引用: 2.生成代理类的方法(本人比较喜欢用这种方式): 使用cmd命令行: a.通过webs ...

  6. 第一章 自定义MVC框架

    第一章  自定义MVC框架1.1 MVC模式设计    组成:Model:模型,用于数据和业务的处理          View :视图,用于数据的显示          Controller:控制器 ...

  7. script defer和async一探

    今天几经折腾,终于回家了,最近公司上的事忙了好一阵子,终于可以闲下来,重新在整理一下,又重新了解了一下defer和async在页面加载过程差异. 定义和用法 async 属性规定一旦脚本可用,则会异步 ...

  8. SIP DB33标准笔记 监控图像获取

    实时监控图像的获取: a) 实时监控图像的获取过程应包括获取实时流.释放实时流.应使用 RFC 3261 中定义的方法INVITE 获取一个摄像机的实时监控视频流. 取消没有完成的连接应采用 CANC ...

  9. PHP的laravel框架后台实现数据导出excel的功能

    要想在PHP后台实现excel导入导出功能,一种简单有效的方法就是使用phpexcel插件. 要使用phpexcel插件,首先需要下载composer,这个工具是专门用来管理项目中库之间的依赖关系的. ...

  10. Visual Studio(VS) F12 查看DLL源代码

    前言 我在VS中调试某个函数时,突发奇想"能不能使用VS的F12(转到定义)查看这个dll中当前函数的实现(源码),而不是像VS自带功能那样只能看到函数名和参数?" 回想起来在安装 ...