As always a more colourful version of this post is available on rpubs.

Even if LM are very simple models at the basis of many more complex ones, LM still have some assumptions that if not met would render any interpretation from the models plainly wrong. In my field of research most people were taught about checking ANOVA assumptions using tests like Levene & co. This is however not the best way to check if my model meet its assumptions as p-values depend on the sample size, with small sample size we will almost never reject the null hypothesis while with big sample even small deviation will lead to significant p-values (discussion). As ANOVA and linear models are two different ways to look at the same model (explanation) we can check ANOVA assumptions using graphical check from a linear model. In R this is easily done using plot(model), but people often ask me what amount of deviation makes me reject a model. One easy way to see if the model checking graphs are off the charts is to simulate data from the model, fit the model to these newly simulated data and compare the graphical checks from the simulated data with the real data. If you cannot differentiate between the simulated and the real data then your model is fine, if you can then try again!

Below is a little function that implement this idea:

lm.test<-function(m  require(plyr)
#the model frame
dat<-model.frame(m)
#the model matrix
f<-formula(m)
modmat<-model.matrix(f,dat)
#the standard deviation of the residuals
sd.resid<-sd(resid(m #sample size
n<-dim(dat)[1]
#get the right-hand side of the formula
#rhs<-all.vars(update(f, 0~.))
#simulate 8 response vectors from model
ys<-lapply(1:8,function(x) rnorm(n,modmat%*%coef(m),sd.resid))
#refit the models
ms<-llply(ys,function(y) lm(y~modmat[,-1]))
#put the residuals and fitted values in a list
df<-llply(ms,function(x) data.frame(Fitted=fitted(x),Resid=resid(x)))
#select a random number from 2 to 8
rnd<-sample(2:8,1)
#put the original data into the list
df<-c(df[1:(rnd-1)],list(data.frame(Fitted=fitted(m),Resid=resid(m))),df[rnd:8]) #plot
par(mfrow=c(3,3))
l_ply(df,function(x){
plot(Resid~Fitted,x,xlab="Fitted",ylab="Residuals")
abline(h=0,lwd=2,lty=2)
}) l_ply(df,function(x){
qqnorm(x$Resid)
qqline(x$Resid)
}) out<-list(Position=rnd)
return(out)
}

This function print the two basic plots: one looking at the spread of the residuals around the fitted values, the other one look at the normality of the residuals. The function return the position of the real model in the 3×3 window, counting from left to right and from top to bottom (ie position 1 is upper left graph).

Let’s try the function:

#a simulated data frame of independent variables
dat<-data.frame(Temp=runif(100,0,20),Treatment=gl(n = 5,k = 20))
contrasts(dat$Treatment)<-"contr.sum"
#the model matrix
modmat<-model.matrix(~Temp*Treatment,data=dat)
#the coefficient
coeff<-rnorm(10,0,4)
#simulate response data
dat$Biomass<-rnorm(100,modmat%*%coeff,1)
#the model
m<-lm(Biomass~Temp*Treatment,dat)
#model check
chk<-lm.test(m)

Can you find which one is the real one? I could not, here is the answer:

chk
$Position
[1] 4

Happy and safe modelling!

转自:https://biologyforfun.wordpress.com/2015/03/25/a-function-to-help-graphical-model-checks-of-lm-and-anova/

A function to help graphical model checks of lm and ANOVA(转)的更多相关文章

  1. PGM:概率图模型Graphical Model

    http://blog.csdn.net/pipisorry/article/details/51461878 概率图模型Graphical Models简介 完全通过代数计算来对更加复杂的模型进行建 ...

  2. 概率图模型(PGM,Probabilistic Graphical Model)

    PGM是现代信号处理(尤其是机器学习)的重要内容. PGM通过图的方式,将多个随机变量之前的关系通过简洁的方式表现出来.因此PGM包括图论和概率论的相关内容. PGM理论研究并解决三个问题: 1)表示 ...

  3. [zz] 混合高斯模型 Gaussian Mixture Model

    聚类(1)——混合高斯模型 Gaussian Mixture Model http://blog.csdn.net/jwh_bupt/article/details/7663885 聚类系列: 聚类( ...

  4. 构建自己的PHP框架--实现Model类(1)

    在之前的博客中,我们定义了ORM的接口,以及决定了使用PDO去实现.最后我们提到会有一个Model类实现ModelInterface接口. 现在我们来实现这个接口,如下: <?php names ...

  5. Implementation Model Editor of AVEVA in OpenSceneGraph

    Implementation Model Editor of AVEVA in OpenSceneGraph eryar@163.com 摘要Abstract:本文主要对工厂和海工设计软件AVEVA的 ...

  6. 【再探backbone 01】模型-Model

    前言 点保存时候不注意发出来了,有需要的朋友将就看吧,还在更新...... 几个月前学习了一下backbone,这段时间也用了下,感觉之前对backbone的学习很是基础,前几天有个园友问我如何将路由 ...

  7. PHP MVC 中的MODEL层

    Model层,就是MVC模式中的数据处理层,用来进行数据和商业逻辑的装封 三.实现你的Mode层 Model层,就是MVC模式中的数据处理层,用来进行数据和商业逻辑的装封,进行他的设计的时候设计到三个 ...

  8. hdwiki中model模块的应用

    control中调用model原则是这样的,如果你的这个model在本control中大部分方法中都要用到,那么,就写在构造函数里面.例如,名字为doc的control的构造函数如下: functio ...

  9. [Backbone.js]如何处理Model里面嵌入的Collection?

    写了近半个月的backbone.js代码,从一开始的todo到现在做仿微信的网页聊天,其中最大的困惑就在于如何处理比较复杂的Model,其内嵌了一个或者多个Collections. 假设我们有一个Pe ...

随机推荐

  1. Python爬虫 URLError异常处理

    1.URLError 首先解释下URLError可能产生的原因: 网络无连接,即本机无法上网 连接不到特定的服务器 服务器不存在 在代码中,我们需要用try-except语句来包围并捕获相应的异常.下 ...

  2. c++中的namespace(附程序运行图)

    实验于华中农业大学逸夫楼2017.3.10 namespace中文意思是命名空间或者叫名字空间,传统的C++只有一个全局的namespace,但是由于现在的程序的规模越来越大,程序的分工越 来越细,全 ...

  3. jQuery扩展函数设置所有对象只读

    jQuery(function ($) {             $.fn.disable = function () {                 return this.each(func ...

  4. [No0000E9]Microsoft Help Viewer 2.3绿色版

    今天没事,提取了一下2017的Microsoft Help Viewer 2.3绿色版,自测没发现什么问题,有问题请后补. 下载地址:http://files.cnblogs.com/files/Ch ...

  5. ArrayList 如何完美去除空值

    package sourceCode.ArrayList; import java.util.ArrayList; import java.util.List; public class arrayL ...

  6. 树莓派安装ubuntu-server,配置镜像,安装python/mysql/samba记录

    目标: 1/在raspberrypi 3B上安装ubuntu-server 2/配置好python/mysql/samba等服务,实现爬虫稳定运行我的硬件准备: 1/raspberrypi 3B 2/ ...

  7. bzoj4825 [Hnoi2017]单旋

    Description H 国是一个热爱写代码的国家,那里的人们很小去学校学习写各种各样的数据结构.伸展树(splay)是一种数据结构,因为代码好写,功能多,效率高,掌握这种数据结构成为了 H 国的必 ...

  8. Java学习记录第一章

    学习Java第一章的记录,这一章主要记录的是Java的最基础部分的了解知识,了解Java的特性和开发环境还有Java语言的优缺点. 计算机语言的发展大概过程:机器语言--->汇编语言---> ...

  9. highcharts的多级下钻以及图形形态转换

    <script src="https://img.hcharts.cn/jquery/jquery-1.8.3.min.js"></script> < ...

  10. iOS-工程和工作空间、静态库和框架之间的关系

    使用Xcode创建的工程Project是单独分开的,如果想要几个工程同时存在,可以通过创建工作空间Workspace.工作空间是对各工程的集合,工程文件名的后缀为.xcodeproj,工作空间文件名的 ...