As always a more colourful version of this post is available on rpubs.

Even if LM are very simple models at the basis of many more complex ones, LM still have some assumptions that if not met would render any interpretation from the models plainly wrong. In my field of research most people were taught about checking ANOVA assumptions using tests like Levene & co. This is however not the best way to check if my model meet its assumptions as p-values depend on the sample size, with small sample size we will almost never reject the null hypothesis while with big sample even small deviation will lead to significant p-values (discussion). As ANOVA and linear models are two different ways to look at the same model (explanation) we can check ANOVA assumptions using graphical check from a linear model. In R this is easily done using plot(model), but people often ask me what amount of deviation makes me reject a model. One easy way to see if the model checking graphs are off the charts is to simulate data from the model, fit the model to these newly simulated data and compare the graphical checks from the simulated data with the real data. If you cannot differentiate between the simulated and the real data then your model is fine, if you can then try again!

Below is a little function that implement this idea:

lm.test<-function(m  require(plyr)
#the model frame
dat<-model.frame(m)
#the model matrix
f<-formula(m)
modmat<-model.matrix(f,dat)
#the standard deviation of the residuals
sd.resid<-sd(resid(m #sample size
n<-dim(dat)[1]
#get the right-hand side of the formula
#rhs<-all.vars(update(f, 0~.))
#simulate 8 response vectors from model
ys<-lapply(1:8,function(x) rnorm(n,modmat%*%coef(m),sd.resid))
#refit the models
ms<-llply(ys,function(y) lm(y~modmat[,-1]))
#put the residuals and fitted values in a list
df<-llply(ms,function(x) data.frame(Fitted=fitted(x),Resid=resid(x)))
#select a random number from 2 to 8
rnd<-sample(2:8,1)
#put the original data into the list
df<-c(df[1:(rnd-1)],list(data.frame(Fitted=fitted(m),Resid=resid(m))),df[rnd:8]) #plot
par(mfrow=c(3,3))
l_ply(df,function(x){
plot(Resid~Fitted,x,xlab="Fitted",ylab="Residuals")
abline(h=0,lwd=2,lty=2)
}) l_ply(df,function(x){
qqnorm(x$Resid)
qqline(x$Resid)
}) out<-list(Position=rnd)
return(out)
}

This function print the two basic plots: one looking at the spread of the residuals around the fitted values, the other one look at the normality of the residuals. The function return the position of the real model in the 3×3 window, counting from left to right and from top to bottom (ie position 1 is upper left graph).

Let’s try the function:

#a simulated data frame of independent variables
dat<-data.frame(Temp=runif(100,0,20),Treatment=gl(n = 5,k = 20))
contrasts(dat$Treatment)<-"contr.sum"
#the model matrix
modmat<-model.matrix(~Temp*Treatment,data=dat)
#the coefficient
coeff<-rnorm(10,0,4)
#simulate response data
dat$Biomass<-rnorm(100,modmat%*%coeff,1)
#the model
m<-lm(Biomass~Temp*Treatment,dat)
#model check
chk<-lm.test(m)

Can you find which one is the real one? I could not, here is the answer:

chk
$Position
[1] 4

Happy and safe modelling!

转自:https://biologyforfun.wordpress.com/2015/03/25/a-function-to-help-graphical-model-checks-of-lm-and-anova/

A function to help graphical model checks of lm and ANOVA(转)的更多相关文章

  1. PGM:概率图模型Graphical Model

    http://blog.csdn.net/pipisorry/article/details/51461878 概率图模型Graphical Models简介 完全通过代数计算来对更加复杂的模型进行建 ...

  2. 概率图模型(PGM,Probabilistic Graphical Model)

    PGM是现代信号处理(尤其是机器学习)的重要内容. PGM通过图的方式,将多个随机变量之前的关系通过简洁的方式表现出来.因此PGM包括图论和概率论的相关内容. PGM理论研究并解决三个问题: 1)表示 ...

  3. [zz] 混合高斯模型 Gaussian Mixture Model

    聚类(1)——混合高斯模型 Gaussian Mixture Model http://blog.csdn.net/jwh_bupt/article/details/7663885 聚类系列: 聚类( ...

  4. 构建自己的PHP框架--实现Model类(1)

    在之前的博客中,我们定义了ORM的接口,以及决定了使用PDO去实现.最后我们提到会有一个Model类实现ModelInterface接口. 现在我们来实现这个接口,如下: <?php names ...

  5. Implementation Model Editor of AVEVA in OpenSceneGraph

    Implementation Model Editor of AVEVA in OpenSceneGraph eryar@163.com 摘要Abstract:本文主要对工厂和海工设计软件AVEVA的 ...

  6. 【再探backbone 01】模型-Model

    前言 点保存时候不注意发出来了,有需要的朋友将就看吧,还在更新...... 几个月前学习了一下backbone,这段时间也用了下,感觉之前对backbone的学习很是基础,前几天有个园友问我如何将路由 ...

  7. PHP MVC 中的MODEL层

    Model层,就是MVC模式中的数据处理层,用来进行数据和商业逻辑的装封 三.实现你的Mode层 Model层,就是MVC模式中的数据处理层,用来进行数据和商业逻辑的装封,进行他的设计的时候设计到三个 ...

  8. hdwiki中model模块的应用

    control中调用model原则是这样的,如果你的这个model在本control中大部分方法中都要用到,那么,就写在构造函数里面.例如,名字为doc的control的构造函数如下: functio ...

  9. [Backbone.js]如何处理Model里面嵌入的Collection?

    写了近半个月的backbone.js代码,从一开始的todo到现在做仿微信的网页聊天,其中最大的困惑就在于如何处理比较复杂的Model,其内嵌了一个或者多个Collections. 假设我们有一个Pe ...

随机推荐

  1. Crgwin 简介及安装

    Crgwin 简介 Cygwin是一个在windows平台上运行的类UNIX模拟环境,是cygnus solutions公司开发的自由软件(该公司开发的著名工具还有eCos,不过现已被Redhat收购 ...

  2. Map和Set

    JavaScript的默认对象表示方式{}可以视为其他语言中的Map或Dictionary的数据结构,即一组键值对. 但是JavaScript的对象有个小问题,就是键必须是字符串.但实际上Number ...

  3. 谱聚类(Spectral clustering)分析(1)

    作者:桂. 时间:2017-04-13  19:14:48 链接:http://www.cnblogs.com/xingshansi/p/6702174.html 声明:本文大部分内容来自:刘建平Pi ...

  4. Unity 类似FingerGestures 的相机跟随功能

    本文原创,转载请注明出处:http://www.cnblogs.com/AdvancePikachu/p/6555188.html 最近在做一款VR项目,有一个查看功能,分为自由查看和跟随查看. 自由 ...

  5. nginx视频直播/点播服务干货分享

    一.ubuntu14.04安装nginx及nginx_rtmp_module扩展 nginx根据是否已安装和安装的方式不同,有一下三种方式安装及扩展安装. 1.全新安装nginx和nginx_rtmp ...

  6. winfrom 实现条形码批量打印以及将条形码信息生成PDF文件

    最近,老大让给客户做个邮包管理程序.其中,包括一些基本信息的增.删.查和改,这些倒不是很难搞定它分分钟的事.其主要难点就在于如何生成条形码.如何批量打印条形码以及将界面条形码信息批量生成以其各自的 b ...

  7. Java 代码安全(一)      —— 避免用String储存敏感数据

    Java 代码安全(一)      -- 避免用String储存敏感数据 如果重要的数据(保存在内存中)在使用后没有及时清理,有可能会导致信息泄漏.开发人员通常都回用String 保存敏感数据(密码, ...

  8. LeetCode 84. Largest Rectangle in Histogram 直方图里的最大长方形

    原题 Given n non-negative integers representing the histogram's bar height where the width of each bar ...

  9. C#中 dynamic 关键字

       所有表达式都能隐式的转换成dynamic,因为所有的表达式最终都能生成从Object派生出的类型. ; int b = a; //隐式转换错误 int b2 = (int)a; ; int b3 ...

  10. 程序员要拥抱变化,聊聊Android即将支持的Java 8

    WeTest 导读 Java 9预计今年也会正式发布,Java 8这个最具变革性且变革性最适于GUI程序的版本,Android终于准备正式支持.从自己开发JavaFx的感受,说一说Java 8应该使用 ...