To The Max

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)

Total Submission(s): 10839    Accepted Submission(s): 5191

Problem Description
Given a two-dimensional array of positive and negative integers, a sub-rectangle is any contiguous sub-array of size 1 x 1 or greater located within the whole array. The sum of a rectangle
is the sum of all the elements in that rectangle. In this problem the sub-rectangle with the largest sum is referred to as the maximal sub-rectangle.



As an example, the maximal sub-rectangle of the array:



0 -2 -7 0

9 2 -6 2

-4 1 -4 1

-1 8 0 -2



is in the lower left corner:



9 2

-4 1

-1 8



and has a sum of 15.
 
Input
The input consists of an N x N array of integers. The input begins with a single positive integer N on a line by itself, indicating the size of the square two-dimensional array. This is
followed by N 2 integers separated by whitespace (spaces and newlines). These are the N 2 integers of the array, presented in row-major order. That is, all numbers in the first row, left to right, then all numbers in the second row, left to right, etc. N may
be as large as 100. The numbers in the array will be in the range [-127,127].
 
Output
Output the sum of the maximal sub-rectangle.
 
Sample Input
4
0 -2 -7 0 9 2 -6 2
-4 1 -4 1 -1
8 0 -2
 
Sample Output
15
 
题目大意:给一个N*N的矩阵求解最大的子矩阵和
解法:压缩数组+暴力(水过)
源代码:
<span style="font-size:18px;">#include<iostream>
#include<stdio.h>
#include<stdlib.h>
#include<string>
#include<string.h>
#include<math.h>
#include<map>
#include<vector>
#include<algorithm>
#include<queue>
using namespace std;
#define MAX 0x3f3f3f3f
#define MIN -0x3f3f3f3f
#define PI 3.14159265358979323
#define N 105
int n;
int ans[N][N];
int value(int x, int y)
{
int sum;
int i, j;
sum = 0;
for (i = 1; i <= n; i++)
{
for (j = 1; j <= n; j++)
{
if (i >= x&&j >= y)
sum = max(sum, ans[i][j] + ans[i - x][j - y] - ans[i - x][j] - ans[i][j - y]);
if (i >= y&&j >= x)
sum = max(sum, ans[i][j] + ans[i - y][j - x] - ans[i - y][j] - ans[i][j - x]);
}
}
return sum;
}
int main()
{
int i, j;
int result;
int num;
int temp;
while (scanf("%d", &n) != EOF)
{
memset(ans, 0, sizeof(ans));
for (i = 1; i <= n; i++)
{
for (j = 1; j <= n; j++)
{
scanf("%d", &num);
ans[i][j] = ans[i - 1][j] + ans[i][j - 1] - ans[i - 1][j - 1] + num;
}
}
result = 0;
for (i = 1; i <= n; i++)
{
for (j = i; j <= n; j++)
{
temp = value(i, j);
if (temp > result)
result = temp;
}
}
printf("%d\n", result);
}
return 0;
}</span>


ACM HDU 1081 To The Max的更多相关文章

  1. hdu 1081 To The Max(dp+化二维为一维)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1081 To The Max Time Limit: 2000/1000 MS (Java/Others ...

  2. dp - 最大子矩阵和 - HDU 1081 To The Max

    To The Max Problem's Link: http://acm.hdu.edu.cn/showproblem.php?pid=1081 Mean: 求N*N数字矩阵的最大子矩阵和. ana ...

  3. HDU 1081 To The Max【dp,思维】

    HDU 1081 题意:给定二维矩阵,求数组的子矩阵的元素和最大是多少. 题解:这个相当于求最大连续子序列和的加强版,把一维变成了二维. 先看看一维怎么办的: int getsum() { ; int ...

  4. Hdu 1081 To The Max

    To The Max Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)Total ...

  5. URAL 1146 Maximum Sum & HDU 1081 To The Max (DP)

    点我看题目 题意 : 给你一个n*n的矩阵,让你找一个子矩阵要求和最大. 思路 : 这个题都看了好多天了,一直不会做,今天娅楠美女给讲了,要转化成一维的,也就是说每一列存的是前几列的和,也就是说 0 ...

  6. HDU 1081 To The Max(动态规划)

    题目链接 Problem Description Given a two-dimensional array of positive and negative integers, a sub-rect ...

  7. hdu 1081 To The Max(二维压缩的最大连续序列)(最大矩阵和)

    Problem Description Given a two-dimensional array of positive and negative integers, a sub-rectangle ...

  8. HDU 1081 To The Max (dp)

    题目链接 Problem Description Given a two-dimensional array of positive and negative integers, a sub-rect ...

  9. HDU 1081 To the Max 最大子矩阵(动态规划求最大连续子序列和)

    Description Given a two-dimensional array of positive and negative integers, a sub-rectangle is any ...

随机推荐

  1. typeof、constructor和instance

    在JavaScript中,我们经常使用typeof来判断一个变量的类型,使用格式为:typeof(data)或typeof data.typeof返回的数据类型有六种:number.string.bo ...

  2. Repeated Substring Pattern --重复字符串

    Given a non-empty string check if it can be constructed by taking a substring of it and appending mu ...

  3. LeetCode 455. Assign Cookies (分发曲奇饼干)

    Assume you are an awesome parent and want to give your children some cookies. But, you should give e ...

  4. 04-从零玩转JavaWeb-JVM内存详情分析

    JVM内存划分栈与栈帧 JVM将内存主要划分为: 方法区 虚拟机栈 本地方法栈 堆 程序计数器 一.方法区:存放字节码,常量 ,静态变量,是一个共享的区域 二.虚拟机栈:执行方法其实就是栈帧入栈,出栈 ...

  5. Golang访问Redis初体验

    go语言的client在redis官网上有很多l客户端,个人感觉redigo使用起来更人性化,重要的是源代码结构很清晰,重要的是支持管道.发布和订阅.连接池等等,所以我选择redigo作为尝试. 1. ...

  6. thinkphp 默认首页 更改

    原thinkphp的默认首页为:Home/index,如果想更改,则需要配置: 在Common/config之下 'DEFAULT_CONTROLLER' => 'Admin', // 更改后默 ...

  7. 无所不会的fiddler遇到的尴尬

    昨天测试项目时,遇到一个尴尬的事 预期功能:点击页面某个按钮会post2个请求 实际情况:点了按钮,fiddler抓包没有看到任何请求 后来经过他人提醒在PC端浏览器打开此页面,点击按钮后看到页面有j ...

  8. Ionic3 组件懒加载

    使用懒加载能够减少程序启动时间,减少打包后的体积,而且可以很方便的使用路由的功能. 使用懒加载: 右侧红色区域可以省略掉(引用.声明也删掉) 若使用ionic命令新建page,则无需进行下面的操作,否 ...

  9. Very Simple Problem

    Very Simple Problem Time Limit:2000MS     Memory Limit:65536KB     64bit IO Format:%I64d & %I64u ...

  10. Android 开发笔记___SQLite__优化记住密码功能

    package com.example.alimjan.hello_world; /** * Created by alimjan on 7/4/2017. */ import com.example ...