ACM HDU 1081 To The Max
To The Max
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 10839 Accepted Submission(s): 5191
is the sum of all the elements in that rectangle. In this problem the sub-rectangle with the largest sum is referred to as the maximal sub-rectangle.
As an example, the maximal sub-rectangle of the array:
0 -2 -7 0
9 2 -6 2
-4 1 -4 1
-1 8 0 -2
is in the lower left corner:
9 2
-4 1
-1 8
and has a sum of 15.
followed by N 2 integers separated by whitespace (spaces and newlines). These are the N 2 integers of the array, presented in row-major order. That is, all numbers in the first row, left to right, then all numbers in the second row, left to right, etc. N may
be as large as 100. The numbers in the array will be in the range [-127,127].
4
0 -2 -7 0 9 2 -6 2
-4 1 -4 1 -1
8 0 -2
15
<span style="font-size:18px;">#include<iostream>
#include<stdio.h>
#include<stdlib.h>
#include<string>
#include<string.h>
#include<math.h>
#include<map>
#include<vector>
#include<algorithm>
#include<queue>
using namespace std;
#define MAX 0x3f3f3f3f
#define MIN -0x3f3f3f3f
#define PI 3.14159265358979323
#define N 105
int n;
int ans[N][N];
int value(int x, int y)
{
int sum;
int i, j;
sum = 0;
for (i = 1; i <= n; i++)
{
for (j = 1; j <= n; j++)
{
if (i >= x&&j >= y)
sum = max(sum, ans[i][j] + ans[i - x][j - y] - ans[i - x][j] - ans[i][j - y]);
if (i >= y&&j >= x)
sum = max(sum, ans[i][j] + ans[i - y][j - x] - ans[i - y][j] - ans[i][j - x]);
}
}
return sum;
}
int main()
{
int i, j;
int result;
int num;
int temp;
while (scanf("%d", &n) != EOF)
{
memset(ans, 0, sizeof(ans));
for (i = 1; i <= n; i++)
{
for (j = 1; j <= n; j++)
{
scanf("%d", &num);
ans[i][j] = ans[i - 1][j] + ans[i][j - 1] - ans[i - 1][j - 1] + num;
}
}
result = 0;
for (i = 1; i <= n; i++)
{
for (j = i; j <= n; j++)
{
temp = value(i, j);
if (temp > result)
result = temp;
}
}
printf("%d\n", result);
}
return 0;
}</span>
ACM HDU 1081 To The Max的更多相关文章
- hdu 1081 To The Max(dp+化二维为一维)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1081 To The Max Time Limit: 2000/1000 MS (Java/Others ...
- dp - 最大子矩阵和 - HDU 1081 To The Max
To The Max Problem's Link: http://acm.hdu.edu.cn/showproblem.php?pid=1081 Mean: 求N*N数字矩阵的最大子矩阵和. ana ...
- HDU 1081 To The Max【dp,思维】
HDU 1081 题意:给定二维矩阵,求数组的子矩阵的元素和最大是多少. 题解:这个相当于求最大连续子序列和的加强版,把一维变成了二维. 先看看一维怎么办的: int getsum() { ; int ...
- Hdu 1081 To The Max
To The Max Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)Total ...
- URAL 1146 Maximum Sum & HDU 1081 To The Max (DP)
点我看题目 题意 : 给你一个n*n的矩阵,让你找一个子矩阵要求和最大. 思路 : 这个题都看了好多天了,一直不会做,今天娅楠美女给讲了,要转化成一维的,也就是说每一列存的是前几列的和,也就是说 0 ...
- HDU 1081 To The Max(动态规划)
题目链接 Problem Description Given a two-dimensional array of positive and negative integers, a sub-rect ...
- hdu 1081 To The Max(二维压缩的最大连续序列)(最大矩阵和)
Problem Description Given a two-dimensional array of positive and negative integers, a sub-rectangle ...
- HDU 1081 To The Max (dp)
题目链接 Problem Description Given a two-dimensional array of positive and negative integers, a sub-rect ...
- HDU 1081 To the Max 最大子矩阵(动态规划求最大连续子序列和)
Description Given a two-dimensional array of positive and negative integers, a sub-rectangle is any ...
随机推荐
- typeof、constructor和instance
在JavaScript中,我们经常使用typeof来判断一个变量的类型,使用格式为:typeof(data)或typeof data.typeof返回的数据类型有六种:number.string.bo ...
- Repeated Substring Pattern --重复字符串
Given a non-empty string check if it can be constructed by taking a substring of it and appending mu ...
- LeetCode 455. Assign Cookies (分发曲奇饼干)
Assume you are an awesome parent and want to give your children some cookies. But, you should give e ...
- 04-从零玩转JavaWeb-JVM内存详情分析
JVM内存划分栈与栈帧 JVM将内存主要划分为: 方法区 虚拟机栈 本地方法栈 堆 程序计数器 一.方法区:存放字节码,常量 ,静态变量,是一个共享的区域 二.虚拟机栈:执行方法其实就是栈帧入栈,出栈 ...
- Golang访问Redis初体验
go语言的client在redis官网上有很多l客户端,个人感觉redigo使用起来更人性化,重要的是源代码结构很清晰,重要的是支持管道.发布和订阅.连接池等等,所以我选择redigo作为尝试. 1. ...
- thinkphp 默认首页 更改
原thinkphp的默认首页为:Home/index,如果想更改,则需要配置: 在Common/config之下 'DEFAULT_CONTROLLER' => 'Admin', // 更改后默 ...
- 无所不会的fiddler遇到的尴尬
昨天测试项目时,遇到一个尴尬的事 预期功能:点击页面某个按钮会post2个请求 实际情况:点了按钮,fiddler抓包没有看到任何请求 后来经过他人提醒在PC端浏览器打开此页面,点击按钮后看到页面有j ...
- Ionic3 组件懒加载
使用懒加载能够减少程序启动时间,减少打包后的体积,而且可以很方便的使用路由的功能. 使用懒加载: 右侧红色区域可以省略掉(引用.声明也删掉) 若使用ionic命令新建page,则无需进行下面的操作,否 ...
- Very Simple Problem
Very Simple Problem Time Limit:2000MS Memory Limit:65536KB 64bit IO Format:%I64d & %I64u ...
- Android 开发笔记___SQLite__优化记住密码功能
package com.example.alimjan.hello_world; /** * Created by alimjan on 7/4/2017. */ import com.example ...