To The Max

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)

Total Submission(s): 10839    Accepted Submission(s): 5191

Problem Description
Given a two-dimensional array of positive and negative integers, a sub-rectangle is any contiguous sub-array of size 1 x 1 or greater located within the whole array. The sum of a rectangle
is the sum of all the elements in that rectangle. In this problem the sub-rectangle with the largest sum is referred to as the maximal sub-rectangle.



As an example, the maximal sub-rectangle of the array:



0 -2 -7 0

9 2 -6 2

-4 1 -4 1

-1 8 0 -2



is in the lower left corner:



9 2

-4 1

-1 8



and has a sum of 15.
 
Input
The input consists of an N x N array of integers. The input begins with a single positive integer N on a line by itself, indicating the size of the square two-dimensional array. This is
followed by N 2 integers separated by whitespace (spaces and newlines). These are the N 2 integers of the array, presented in row-major order. That is, all numbers in the first row, left to right, then all numbers in the second row, left to right, etc. N may
be as large as 100. The numbers in the array will be in the range [-127,127].
 
Output
Output the sum of the maximal sub-rectangle.
 
Sample Input
4
0 -2 -7 0 9 2 -6 2
-4 1 -4 1 -1
8 0 -2
 
Sample Output
15
 
题目大意:给一个N*N的矩阵求解最大的子矩阵和
解法:压缩数组+暴力(水过)
源代码:
<span style="font-size:18px;">#include<iostream>
#include<stdio.h>
#include<stdlib.h>
#include<string>
#include<string.h>
#include<math.h>
#include<map>
#include<vector>
#include<algorithm>
#include<queue>
using namespace std;
#define MAX 0x3f3f3f3f
#define MIN -0x3f3f3f3f
#define PI 3.14159265358979323
#define N 105
int n;
int ans[N][N];
int value(int x, int y)
{
int sum;
int i, j;
sum = 0;
for (i = 1; i <= n; i++)
{
for (j = 1; j <= n; j++)
{
if (i >= x&&j >= y)
sum = max(sum, ans[i][j] + ans[i - x][j - y] - ans[i - x][j] - ans[i][j - y]);
if (i >= y&&j >= x)
sum = max(sum, ans[i][j] + ans[i - y][j - x] - ans[i - y][j] - ans[i][j - x]);
}
}
return sum;
}
int main()
{
int i, j;
int result;
int num;
int temp;
while (scanf("%d", &n) != EOF)
{
memset(ans, 0, sizeof(ans));
for (i = 1; i <= n; i++)
{
for (j = 1; j <= n; j++)
{
scanf("%d", &num);
ans[i][j] = ans[i - 1][j] + ans[i][j - 1] - ans[i - 1][j - 1] + num;
}
}
result = 0;
for (i = 1; i <= n; i++)
{
for (j = i; j <= n; j++)
{
temp = value(i, j);
if (temp > result)
result = temp;
}
}
printf("%d\n", result);
}
return 0;
}</span>


ACM HDU 1081 To The Max的更多相关文章

  1. hdu 1081 To The Max(dp+化二维为一维)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1081 To The Max Time Limit: 2000/1000 MS (Java/Others ...

  2. dp - 最大子矩阵和 - HDU 1081 To The Max

    To The Max Problem's Link: http://acm.hdu.edu.cn/showproblem.php?pid=1081 Mean: 求N*N数字矩阵的最大子矩阵和. ana ...

  3. HDU 1081 To The Max【dp,思维】

    HDU 1081 题意:给定二维矩阵,求数组的子矩阵的元素和最大是多少. 题解:这个相当于求最大连续子序列和的加强版,把一维变成了二维. 先看看一维怎么办的: int getsum() { ; int ...

  4. Hdu 1081 To The Max

    To The Max Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)Total ...

  5. URAL 1146 Maximum Sum & HDU 1081 To The Max (DP)

    点我看题目 题意 : 给你一个n*n的矩阵,让你找一个子矩阵要求和最大. 思路 : 这个题都看了好多天了,一直不会做,今天娅楠美女给讲了,要转化成一维的,也就是说每一列存的是前几列的和,也就是说 0 ...

  6. HDU 1081 To The Max(动态规划)

    题目链接 Problem Description Given a two-dimensional array of positive and negative integers, a sub-rect ...

  7. hdu 1081 To The Max(二维压缩的最大连续序列)(最大矩阵和)

    Problem Description Given a two-dimensional array of positive and negative integers, a sub-rectangle ...

  8. HDU 1081 To The Max (dp)

    题目链接 Problem Description Given a two-dimensional array of positive and negative integers, a sub-rect ...

  9. HDU 1081 To the Max 最大子矩阵(动态规划求最大连续子序列和)

    Description Given a two-dimensional array of positive and negative integers, a sub-rectangle is any ...

随机推荐

  1. python函数下篇装饰器和闭包,外加作用域

    装饰器和闭包的基础概念 装饰器是一种设计模式能实现代码重用,经常用于查日志,性能测试,事务处理等,抽离函数大量不必的功能. 装饰器:1.装饰器本身是一个函数,用于装饰其它函数:2.功能:增强被装饰函数 ...

  2. angular2安装笔记

    主要摘自:http://www.runoob.com/angularjs2/angularjs2-typescript-setup.html http://blog.csdn.net/lgpwwa/a ...

  3. Problem W

    Problem Description Speakless很早就想出国,现在他已经考完了所有需要的考试,准备了所有要准备的材料,于是,便需要去申请学校了.要申请国外的任何大学,你都要交纳一定的申请费用 ...

  4. asp.net core webapi文件上传

    最近开发一个新项目,使用了asp.net core 2.0,采用webapi开发后台,postgresql为数据库.最先来的问题就是上传文件的问题. POST文件的一些坑 使用默认模板创建webapi ...

  5. JavaNIO缓冲区

    package com.nio.test; import java.nio.ByteBuffer; import org.junit.Test; /** * * @author fliay * * 一 ...

  6. Servlet的理解

    一.什么是Servlet? Servlet是用Java编写的web组件,实际上可以简单的理解为是用来处理请求的,为什么这么说,看了它的生命周期就知道了. 二.常见的Servlet容器 4容器顾名思义是 ...

  7. Layui框架+PHP打造个人简易版网盘系统

    网盘系统   大家应该都会注册过致命的一些网盘~如百度云.百科介绍:网盘,又称网络U盘.网络硬盘,是由互联网公司推出的在线存储服务,服务器机房为用户划分一定的磁盘空间,为用户免费或收费提供文件的存储. ...

  8. 【1】maven来管理我的SSM项目

    新建个maven项目,第一步当然是配置好自己需要的jar包,maven使用pom.xml管理 并不是每一个都有用,但是都是常见jar,方便以后自己调用来查找 <project xmlns=&qu ...

  9. MVC页面静态化

    MVC 页面静态化   最近工作需要,实现页面静态化,以前在ASP时代,都是FSO自己手动生成的. 新时代,MVC了,当然也要新技术,网上一搜,找到一种解决方案,是基于MVC3的,实现原理是通过mvc ...

  10. C#写的较完美验证码通用类

    using System; using System.Collections; using System.ComponentModel; using System.Data; using System ...