TensorRT-优化-原理

一.优化方式

TentsorRT 优化方式:

TensorRT优化方法主要有以下几种方式,最主要的是前面两种。

  • 层间融合或张量融合(Layer & Tensor Fusion)

如下图左侧是GoogLeNetInception模块的计算图。这个结构中有很多层,在部署模型推理时,这每一层的运算操作都是由GPU完成的,但实际上是GPU通过启动不同的CUDA(Compute unified device architecture)核心来完成计算的,CUDA核心计算张量的速度是很快的,但是往往大量的时间是浪费在CUDA核心的启动和对每一层输入/输出张量的读写操作上面,这造成了内存带宽的瓶颈和GPU资源的浪费。TensorRT通过对层间的横向或纵向合并(合并后的结构称为CBR,意指 convolution, bias, and ReLU layers are fused to form a single layer),使得层的数量大大减少。横向合并可以把卷积、偏置和激活层合并成一个CBR结构,只占用一个CUDA核心。纵向合并可以把结构相同,但是权值不同的层合并成一个更宽的层,也只占用一个CUDA核心。合并之后的计算图(图4右侧)的层次更少了,占用的CUDA核心数也少了,因此整个模型结构会更小,更快,更高效。

  • 数据精度校准(Weight &Activation Precision Calibration)

大部分深度学习框架在训练神经网络时网络中的张量(Tensor)都是32位浮点数的精度(Full 32-bit precision,FP32),一旦网络训练完成,在部署推理的过程中由于不需要反向传播,完全可以适当降低数据精度,比如降为FP16或INT8的精度。更低的数据精度将会使得内存占用和延迟更低,模型体积更小。

如下表为不同精度的动态范围:

Precision

Dynamic Range

FP32

−3.4×1038 +3.4×1038−3.4×1038 +3.4×1038

FP16

−65504 +65504−65504 +65504

INT8

−128 +127−128 +127

INT8只有256个不同的数值,使用INT8来表示 FP32精度的数值,肯定会丢失信息,造成性能下降。不过TensorRT会提供完全自动化的校准(Calibration )过程,会以最好的匹配性能将FP32精度的数据降低为INT8精度,最小化性能损失。关于校准过程,后面会专门做一个探究。

  • Kernel Auto-Tuning

网络模型在推理计算时,是调用GPU的CUDA核进行计算的。TensorRT可以针对不同的算法,不同的网络模型,不同的GPU平台,进行 CUDA核的调整(怎么调整的还不清楚),以保证当前模型在特定平台上以最优性能计算。

TensorRT will pick the implementation from a library of kernels that delivers the best performance for the target GPU, input data size, filter size, tensor layout, batch size and other parameters.

  • Dynamic Tensor Memory

在每个tensor的使用期间,TensorRT会为其指定显存,避免显存重复申请,减少内存占用和提高重复使用效率。

  • Multi-Stream Execution

Scalable design to process multiple input streams in parallel,这个应该就是GPU底层的优化了。

二.原理

TensorRT是一个高性能的深度学习推理(Inference)优化器,可以为深度学习应用提供低延迟、高吞吐率的部署推理。TensorRT可用于对超大规模数据中心、嵌入式平台或自动驾驶平台进行推理加速。TensorRT现已能支持TensorFlow、Caffe、Mxnet、Pytorch等几乎所有的深度学习框架,将TensorRT和NVIDIA的GPU结合起来,能在几乎所有的框架中进行快速和高效的部署推理。

TensorRT 是一个C++库,从 TensorRT 3 开始提供C++ API和Python API,主要用来针对 NVIDIA GPU进行 高性能推理(Inference)加速。现在最新版TensorRT是4.0版本。

TensorRT 之前称为GIE。

关于推理(Inference):

由以上两张图可以很清楚的看出,训练(training)和 推理(inference)的区别:

  • 训练(training)包含了前向传播和后向传播两个阶段,针对的是训练集。训练时通过误差反向传播来不断修改网络权值(weights)。
  • 推理(inference)只包含前向传播一个阶段,针对的是除了训练集之外的新数据。可以是测试集,但不完全是,更多的是整个数据集之外的数据。其实就是针对新数据进行预测,预测时,速度是一个很重要的因素。

一般的深度学习项目,训练时为了加快速度,会使用多GPU分布式训练。但在部署推理时,为了降低成本,往往使用单个GPU机器甚至嵌入式平台(比如 NVIDIA Jetson)进行部署,部署端也要有与训练时相同的深度学习环境,如caffe,TensorFlow等。

由于训练的网络模型可能会很大(比如,inception,resnet等),参数很多,而且部署端的机器性能存在差异,就会导致推理速度慢,延迟高。这对于那些高实时性的应用场合是致命的,比如自动驾驶要求实时目标检测,目标追踪等。

所以为了提高部署推理的速度,出现了很多轻量级神经网络,比如squeezenet,mobilenet,shufflenet等。基本做法都是基于现有的经典模型提出一种新的模型结构,然后用这些改造过的模型重新训练,再重新部署。

而tensorRT 则是对训练好的模型进行优化。 tensorRT就只是 推理优化器。当你的网络训练完之后,可以将训练模型文件直接丢进tensorRT中,而不再需要依赖深度学习框架(Caffe,TensorFlow等),如下:

可以认为tensorRT是一个只有前向传播的深度学习框架,这个框架可以将 Caffe,TensorFlow的网络模型解析,然后与tensorRT中对应的层进行一一映射,把其他框架的模型统一全部 转换到tensorRT中,然后在tensorRT中可以针对NVIDIA自家GPU实施优化策略,并进行部署加速。

目前TensorRT4.0 几乎可以支持所有常用的深度学习框架,对于caffe和TensorFlow来说,tensorRT可以直接解析他们的网络模型;对于caffe2,pytorch,mxnet,chainer,CNTK等框架则是首先要将模型转为 ONNX 的通用深度学习模型,然后对ONNX模型做解析。而tensorflow和MATLAB已经将TensorRT集成到框架中去了。

ONNX(Open Neural Network Exchange )是微软和Facebook携手开发的开放式神经网络交换工具,也就是说不管用什么框架训练,只要转换为ONNX模型,就可以放在其他框架上面去inference。这是一种统一的神经网络模型定义和保存方式,上面提到的除了tensorflow之外的其他框架官方应该都对onnx做了支持,而ONNX自己开发了对tensorflow的支持。从深度学习框架方面来说,这是各大厂商对抗谷歌tensorflow垄断地位的一种有效方式;从研究人员和开发者方面来说,这可以使开发者轻易地在不同机器学习工具之间进行转换,并为项目选择最好的组合方式,加快从研究到生产的速度。

上面图中还有一个 Netwok Definition API 这个是为了给那些使用自定义的深度学习框架训练模型的人提供的TensorRT接口。举个栗子:比如 YOLO 作者使用的darknet要转tensorrt估计得使用这个API,不过一般网上有很多使用其他框架训练的YOLO,这就可以使用对应的caffe/tensorflow/onnx API了。

ONNX / TensorFlow / Custom deep-learning frame模型的工作方式:

现在tensorRT支持的层有:

  • Activation: ReLU, tanh and sigmoid
  • Concatenation : Link together multiple tensors across the channel dimension.
  • Convolution: 3D,2D
  • Deconvolution
  • Fully-connected: with or without bias
  • ElementWise: sum, product or max of two tensors
  • Pooling: max and average
  • Padding
  • Flatten
  • LRN: cross-channel only
  • SoftMax: cross-channel only
  • RNN: RNN, GRU, and LSTM
  • Scale: Affine transformation and/or exponentiation by constant values
  • Shuffle: Reshuffling of tensors , reshape or transpose data
  • Squeeze: Removes dimensions of size 1 from the shape of a tensor
  • Unary: Supported operations are exp, log, sqrt, recip, abs and neg
  • Plugin: integrate custom layer implementations that TensorRT does not natively support.

基本上比较经典的层比如,卷积,反卷积,全连接,RNN,softmax等,在tensorRT中都是有对应的实现方式的,tensorRT是可以直接解析的。

但是由于现在深度学习技术发展日新月异,各种不同结构的自定义层(比如:STN)层出不穷,所以tensorRT是不可能全部支持当前存在的所有层的。那对于这些自定义的层该怎么办?

tensorRT中有一个 Plugin 层,这个层提供了 API 可以由用户自己定义tensorRT不支持的层。 如下图:

这就解决了适应不同用户的自定义层的需求。

TensorRT-优化-原理的更多相关文章

  1. CPPFormatLibary提升效率的优化原理

    CPPFormatLibary,以下简称FL,介绍:关于CPPFormatLibary. 与stringstream,甚至C库的sprintf系列想比,FL在速度上都有优势,而且是在支持.net格式化 ...

  2. MySQL Optimization 优化原理

    MySQL Optimization 优化原理 MySQL逻辑架构 如果能在头脑中构建一幅MySQL各组件之间如何协同工作的架构图,有助于深入理解MySQL服务器.下图展示了MySQL的逻辑架构图. ...

  3. deeplearning算法优化原理

    deeplearning算法优化原理目录· 量化原理介绍 · 剪裁原理介绍 · 蒸馏原理介绍 · 轻量级模型结构搜索原理介绍 1. Quantization Aware Training量化介绍1.1 ...

  4. 基于TensorRT优化的Machine Translation

    基于TensorRT优化的Machine Translation 机器翻译系统用于将文本从一种语言翻译成另一种语言.递归神经网络(RNN)是机器翻译中最流行的深度学习解决方案之一. TensorRT机 ...

  5. MySQL架构及优化原理

    1 MySQL架构原理 1.1 MySQL架构原理参看下述链接: https://blog.csdn.net/hguisu/article/details/7106342 1.2 MySQL优化详解参 ...

  6. sql语句优化原理

    前言 网上有很多关于sql语句优化的文章,我这里想说下为什么这样...写sql语句,能够提高查询的效率. 1 sql语句优化原理 要想写出好的sql,就要学会用数据库的方式来思考如何执行sql,那么什 ...

  7. 从浏览器渲染层面解析css3动效优化原理

    引言 在h5开发中,我们经常会需要实现一些动效来让页面视觉效果更好,谈及动效便不可避免地会想到动效性能优化这个话题: 减少页面DOM操作,可以使用CSS实现的动效不多出一行js代码 使用绝对定位脱离让 ...

  8. process lasso 优化原理

    <星际争霸2:虚空之遗>很多玩家的CPU性能并不低,但是在星际2中的表现就总会出现掉帧的情况,那么应该如何提升CPU的性能就成了玩家关注的话题,下面小编就为大家带来星际争霸2虚空之遗cpu ...

  9. 我必须得告诉大家的MySQL优化原理

    本文转载自http://www.jianshu.com/p/d7665192aaaf 说起MySQL的查询优化,相信大家积累一堆技巧:不能使用SELECT *.不使用NULL字段.合理创建索引.为字段 ...

  10. MySQL优化原理

    前言 说起MySQL的查询优化,相信大家收藏了一堆:不能使用SELECT *.不使用NULL字段.合理创建索引.为字段选择合适的数据类型..... 你是否真的理解这些优化技巧?是否理解其背后的工作原理 ...

随机推荐

  1. The 2014 ACM-ICPC Asia Mudanjiang Regional First Round A

    网选A,水题: 这个是水题,只要枚举一遍,看有多少a[i-1]<a[i]>a[i+1],不解释了.

  2. Windows核心编程 第26章 窗口消 息

    窗 口 消 息 Wi n d o w s允许一个进程至多建立10 000个不同类型的用户对象(User object):图符.光标.窗口类.菜单.加速键表等等.当一个线程调用一个函数来建立某个对象时, ...

  3. C#/VB.NET 自定义动画路径

    PPT中的动画效果可分为已有内置动画以及自定义动画.设置内置动画,只需直接指定动画效果类型即可.本文主要介绍如何实现自定义动画,即自定义形状动作线性路径.附C#及VB.NET代码供参考. 程序运行环境 ...

  4. javaScript的成长之路【何为函数,面向对象又是啥!!!】

  5. Java中读取文件的几种路径配置

    获取配置文件的两种方式区别 ClassLoader.getSystemClassLoader().getResourceAsStream() //ClassLoader.getSystemClassL ...

  6. 【BUAA软工】Beta阶段设计与计划

    一.需求再分析 根据用户反馈,是否发现之前的需求分析有偏差?为什么会出现这种偏差?beta阶段你们是否能真的分析清楚用户需求?如何做到? 根据alpha阶段同学们以及课程组老师和助教的使用反馈,总结起 ...

  7. 使用JSONassert进行JSON对象对比

      在日常工作中,会接到用户提出一张订单,修改后需要记录每次修改的信息,然后需要查看修改前后的差异信息这样的需求.要实现这样的功能方式有很多.下面介绍下JSONassert的简单使用,也方便自己后续使 ...

  8. centos7安装powershell和powercli

    poershell github https://github.com/PowerShell/PowerShell/releases 本次采用github下载对应的rpm进行安装 windows下安装 ...

  9. Linux 系统运行着许多子系统和应用程序。您可以使用系统日志记录从启动时就收集有关运行中系统的数据。有时

    概述 在本教程中,您将学习以下内容: 配置 syslog 守护程序 了解标准设施.优先级和操作 配置日志轮换 了解 rsyslog 和 syslog-ng 系统内部发生了什么 Linux 系统运行着许 ...

  10. gitlab同步插件gitlab-mirrors报错<已解决,未找到原因>

    今天下午在使用gitlab-mirrors同步插件时,发现一直在报错 # ~/gitlab-mirrors/add_mirror.sh --git --project-name manifests - ...