目录

Miyato T., Kataoka T., Koyama M & Yoshida Y. SPECTRAL NORMALIZATION FOR GENERATIVE ADVERSARIAL NETWORKS. ICLR, 2018.

通过限制谱范数来限制Lipschitz常数, 但又不像weight normalization 或者其它的正则化方法一样, 本文提出的方法不会丧失过多的灵活性且保持高效.

主要内容

经过WGAN之后, 有许多方法是探讨如何限制Lipschitz常数的, 即

\[\min_G \max_{\|f\|_{Lip} \le K} V(G, D),
\]

其中\(f\)为

\[f(x,\theta) = W^{L+1}a_L (W^L(a_{L-1}(W^{L-1}(\cdots a_1(W^1x)\cdots)))),
\]
\[D(x,\theta) = \mathcal{A}(f(x,\theta)).
\]

实际上,

\[\|f\|_{Lip} \le \prod_{i=1}^{L+1} \sigma(W^l),
\]

其中\(\sigma\)为谱范数. 故本文的思想是, 实际使用下面的权重矩阵

\[\bar{W}_{SN} (W) := W/\sigma(W),
\]

此时\(\|f\|_{Lip} \le 1\).

但是, 由于\(W\)在训练过程中是变化的, 所以, 作者并不是精确求解\(\sigma(W)\), 采用了一种类似running average的方式, 既然

\[\sigma(W) = u_1^T Wv_1,
\]

其中\(u_1, v_1\)分别为\(\sigma(W)\)所对应的左特征向量和右特征向量.

作者进一步分析, 经过标准化后的\(W\)的梯度的变化

\[\frac{\partial V(G, D)}{\partial W} = \frac{1}{\sigma(W)} (\hat{\mathbb{E}}[\delta h^T] - \lambda u_1v_1^T),
\]

其中\(\lambda:= \hat{\mathbb{E}}[\delta^T (\bar{W}_{SN}h)]\), \(\delta:= (\partial V(G,D) / \partial (\bar{W}_{SN}h))^T\) . 与原来的梯度仅仅差了后面的一项, 这相当于阻止整个网络仅仅往一个方向学习而产生mode collapse.

实际上, 已经有很多类似的方法了, 一些是在损失函数后面加正则化项, 一些是直接要求多个奇异值的和等于某一个值(WN), 作者认为这些方法会让网络的能力下降, 在某种程度上会迫使权重的奇异值集中在一个维度之上. 还有像正交化的约束, 是能够避免集中在一个维度之上的, 但是这假设所以维度的意义是同等重要, 这个并不合适, 因为谱不一致是有意义的.

SNGAN的更多相关文章

  1. GANS 资料

    https://blog.csdn.net/a312863063/article/details/83512870 目 录第一章 初步了解GANs 3 1. 生成模型与判别模型. 3 2. 对抗网络思 ...

  2. 你的GAN训练得如何--GAN 的召回率(多样性)和精确率(图像质量)方法评估

    生成对抗网络(GAN)是当今最流行的图像生成方法之一,但评估和比较 GAN 产生的图像却极具挑战性.之前许多针对 GAN 合成图像的研究都只用了主观视觉评估,一些定量标准直到最近才开始出现.本文认为现 ...

  3. 2019 ICCV、CVPR、ICLR之视频预测读书笔记

    2019 ICCV.CVPR.ICLR之视频预测读书笔记 作者 | 文永亮 学校 | 哈尔滨工业大学(深圳) 研究方向 | 视频预测.时空序列预测 ICCV 2019 CVP github地址:htt ...

  4. 软件工程第一次作业:Warm Up

    Warm Up 项目 内容 作业所属课程 2021春季软件工程(罗杰 任健) 作业要求 第一次阅读作业 课程目标 培养通过团队协作使用软件开发工具按照软件工程方法开发高质量并且可用的复杂软件系统的能力 ...

随机推荐

  1. Spark(十六)【SparkStreaming基本使用】

    目录 一. SparkStreaming简介 1. 相关术语 2. SparkStreaming概念 3. SparkStreaming架构 4. 背压机制 二. Dstream入门 1. WordC ...

  2. 纯CSS圆环与圆

    1. 两个标签的嵌套: <div class="element1"> <div class="child1"></div> ...

  3. 节省内存的循环banner(一)

    循环banner是指scrollview首尾相连,循环播放的效果,使用非常广泛.例如淘宝的广告栏等. 如果是简单的做法可以把所有要显示的图片全部放进一个数组里,创建相同个数的图片视图来显示图片.这样的 ...

  4. JConsole可视化工具

    JConsole基本介绍 Jconsole (Java Monitoring and Management Console),一种基于JMX的可视化监视.管理工具.JConsole 基本包括以下基本功 ...

  5. 【Linux】【Basis】Grub

    GRUB(Boot Loader):   1. grub: GRand Unified Bootloader grub 0.x: grub legacy grub 1.x: grub2   2. gr ...

  6. 通过jquery实现form表单提交后不跳转页面,保留当前页面

    jquery代码: <script type="text/javascript" src="../js/jquery-1.8.3.min.js">& ...

  7. 什么是token?

    一.简介 token的意思是"令牌",是服务端生成的一串字符串,作为客户端进行请求的一个标识. 当用户第一次登录后,服务器生成一个token并将此token返回给客户端,以后客户端 ...

  8. Jmeter——SMTP Sampler发送邮件

    在平时测试过程中,也会出一些测试报告,那jmeter在不依托其他工具的情况下,可不可以发送邮件呢,自然是可以的. 我们直接使用SMTP Sampler即可. SMTP Sampler参数 我们来添加个 ...

  9. [BUUCTF]REVERSE——[SUCTF2019]SignIn

    [SUCTF2019]SignIn 附件 步骤: 无壳,64位ida载入 程序调用了 __gmpz_init_set_str 函数,这是一个 GNU 高精度算法库,在RSA加密中见过几次,加上6553 ...

  10. Java编程思想—读书笔记(更新中)

    第1章 对象导论 1.4 被隐藏的具体实现 访问控制的原因: 让客户端程序员无法触及他们不应该触及的部分(不是用户解决特定问题所需的接口的一部分) 允许库设计者可以改变类内容的工作方式而不用担心会影响 ...