D. Puzzles

Barney lives in country USC (United States of Charzeh). USC has n cities numbered from 1 through n and n - 1 roads between them. Cities and roads of USC form a rooted tree (Barney's not sure why it is rooted). Root of the tree is the city number 1. Thus if one will start his journey from city 1, he can visit any city he wants by following roads.

Some girl has stolen Barney's heart, and Barney wants to find her. He starts looking for in the root of the tree and (since he is Barney Stinson not a random guy), he uses a random DFS to search in the cities. A pseudo code of this algorithm is as follows:


let starting_time be an array of length n
current_time = 0
dfs(v):
current_time = current_time + 1
starting_time[v] = current_time
shuffle children[v] randomly (each permutation with equal possibility)
// children[v] is vector of children cities of city v
for u in children[v]:
dfs(u)

As told before, Barney will start his journey in the root of the tree (equivalent to call dfs(1)).

Now Barney needs to pack a backpack and so he wants to know more about his upcoming journey: for every city i, Barney wants to know the expected value of starting_time[i]. He's a friend of Jon Snow and knows nothing, that's why he asked for your help.

Input

The first line of input contains a single integer n (1 ≤ n ≤ 105) — the number of cities in USC.

The second line contains n - 1 integers p2, p3, ..., pn (1 ≤ pi < i), where pi is the number of the parent city of city number i in the tree, meaning there is a road between cities numbered pi and i in USC.

Output

In the first and only line of output print n numbers, where i-th number is the expected value of starting_time[i].

Your answer for each city will be considered correct if its absolute or relative error does not exceed 10 - 6.

Examples
Input
7
1 2 1 1 4 4
Output
1.0 4.0 5.0 3.5 4.5 5.0 5.0 
Input
12
1 1 2 2 4 4 3 3 1 10 8
Output
1.0 5.0 5.5 6.5 7.5 8.0 8.0 7.0 7.5 6.5 7.5 8.0 

题意:给你一棵树,然后用dfs随即给每个点标号,求每个点标号的期望;
思路:dfs+概率dp;
我们可以知道根节点的期望为1;
然后,他的子节点都是等概率的。
dp数组是各个节点的期望。
先给样例一的图:

我们写第二层的排列
1,1 2 4 5
2,1 2 5 4
3,1 4 2 5
4,1 4 5 2
5,1 5 2 4
6,1 5 4 2
所以节点2的期望为dp[1]+((1+size(4)+size(5))*2+size(4)+1+size(5)+1+1+1)/6;
根据这个我们先试着猜想dp[v]=dp[u]+1+(size(u)-size(v)-1)/2;
这就是状态转移方程;
我们先把上面到下面一层所必须加上一步先加上,也就是dp[u]+1;
然后我们可以知道下面所有的排列中,此节点的兄弟节点,要么排在这个节点之前要么之后,所一其他节点对于该节点的贡献为size()/2;
也就是排在前面和后面是等概率的;
复杂度O(n)
 1 #include<stdio.h>
2 #include<algorithm>
3 #include<iostream>
4 #include<string.h>
5 #include<queue>
6 #include<stack>
7 #include<set>
8 #include<stdlib.h>
9 #include<vector>
10 using namespace std;
11 vector<int>vec[100006];
12 long long cnt[100006];
13 long long dfs1(int n);
14 double dp[100006];
15 void dfs(int n);
16 int main(void)
17 {
18 int i,j,k;
19 while(scanf("%d",&k)!=EOF)
20 {
21 int n;memset(dp,0,sizeof(dp));
22 for(i=0; i<100006; i++)
23 {
24 cnt[i]=0;
25 vec[i].clear();
26 }
27 for(i=2; i<=k; i++)
28 {
29 scanf("%d",&n);
30 vec[n].push_back(i);
31 }
32 long long t=dfs1(1);
33 dp[1]=1.0;
34 dfs(1);printf("%.1f",dp[1]);
35 for(i=2; i<=k; i++)
36 {
37 printf(" %.1f",dp[i]);
38 }
39 printf("\n");
40 }
41 return 0;
42 }
43 long long dfs1(int n)
44 {
45 long long sum;
46 int i,j,k;
47 for(i=0; i<vec[n].size(); i++)
48 {
49 cnt[n]+=dfs1(vec[n][i]);
50 }
51 cnt[n]+=1;
52 return cnt[n];
53 }
54 void dfs(int n)
55 {
56 int i,j;
57 for(i=0; i<vec[n].size(); i++)
58 {
59 int x;
60 x=vec[n][i];
61 dp[x]=dp[n]+1.0;
62 dp[x]+=1.0*(cnt[n]-cnt[x]-1)/2.0;
63 dfs(x);
64 }
65 }
 

D. Puzzles(Codeforces Round #362 (Div. 2))的更多相关文章

  1. Codeforces Round #362 (Div. 2) D. Puzzles

    D. Puzzles time limit per test 1 second memory limit per test 256 megabytes input standard input out ...

  2. 【转载】【树形DP】【数学期望】Codeforces Round #362 (Div. 2) D.Puzzles

    期望计算的套路: 1.定义:算出所有测试值的和,除以测试次数. 2.定义:算出所有值出现的概率与其乘积之和. 3.用前一步的期望,加上两者的期望距离,递推出来. 题意: 一个树,dfs遍历子树的顺序是 ...

  3. Codeforces Round #362 (Div. 2) C. Lorenzo Von Matterhorn (类似LCA)

    题目链接:http://codeforces.com/problemset/problem/697/D 给你一个有规则的二叉树,大概有1e18个点. 有两种操作:1操作是将u到v上的路径加上w,2操作 ...

  4. #map+LCA# Codeforces Round #362 (Div. 2)-C. Lorenzo Von Matterhorn

    2018-03-16 http://codeforces.com/problemset/problem/697/C C. Lorenzo Von Matterhorn time limit per t ...

  5. Codeforces Round #362 (Div. 2) A.B.C

    A. Pineapple Incident time limit per test 1 second memory limit per test 256 megabytes input standar ...

  6. A. Puzzles CodeForces Round #196 (Div.2)

    题目的大意是,给你 m 个数字,让你从中选 n 个,使得选出的数字的极差最小. 好吧,超级大水题.因为要极差最小,所以当然想到要排个序咯,然后去连续的 n 个数字,因为数据不大,所以排完序之后直接暴力 ...

  7. Codeforces Round #362 (Div. 2)->B. Barnicle

    B. Barnicle time limit per test 1 second memory limit per test 256 megabytes input standard input ou ...

  8. Codeforces Round #362 (Div. 2)->A. Pineapple Incident

    A. Pineapple Incident time limit per test 1 second memory limit per test 256 megabytes input standar ...

  9. Codeforces Round #362 (Div. 2) B 模拟

    B. Barnicle time limit per test 1 second memory limit per test 256 megabytes input standard input ou ...

随机推荐

  1. 表格合并单元格【c#】

    gridBranchInfo.DataSource = dtBranchViewList; gridBranchInfo.DataBind(); Random random = new Random( ...

  2. Portrait Photography Beginners Guide

    Please visit photoandtips稻糠亩 for more information. 六级/考研单词: vogue, derive, gorgeous, thereby, strict ...

  3. 【JAVA】【Basic】MacOS上搭建JAVA开发环境

    1. JRE 1.1. 下载地址:https://www.oracle.com/technetwork/java/javase/downloads/index.html 1.1.1. dmg格式安装: ...

  4. SVN终端演练(个人开发\多人开发)

    SVN终端演练(个人开发) ### 1. 命令格式 命令行格式: svn <subcommand> [options] [args]       svn 子命令 [选项] [参数]     ...

  5. 【Linux】【Services】【SaaS】Docker+kubernetes(10. 利用反向代理实现服务高可用)

    1. 简介 1.1. 由于K8S并没有自己的集群,所以需要借助其他软件来实现,公司的生产环境使用的是Nginx,想要支持TCP转发要额外安装模块,测试环境中我就使用HAPROXY了 1.2. 由于是做 ...

  6. Spring Boot对日志的控制

    一.logback日志技术介绍 Spring Boot中使用的日志技术为logback.其与Log4J都出自同一人,性能要优于Log4J,是Log4J的替代者. 在Spring Boot中若要使用lo ...

  7. 【MySQL】统计累计求和

    https://geek-docs.com/sql/sql-examples/sql-cumulative-sum.html

  8. 聊聊 SpringBoot 中的两种占位符:@*@ 和 ${*}

    前言 在 SpringBoot 项目中,我们经常会使用两种占位符(有时候还会混用),它们分别是: @*@ ${*} 如果我们上网搜索「SpringBoot 的占位符 @」,大部分答案会告诉你,Spri ...

  9. jenkins pipeline语法

    目录 一.声明式 二.脚本式 基本 判断 异常处理 Steps node withEnv 一.声明式 声明式Pipeline必须包含在名为pipeline的语句块中,典型的声明式Pipeline语法如 ...

  10. Istio在Rainbond Service Mesh体系下的落地实践

    两年前Service Mesh(服务网格)一出来就受到追捧,很多人认为它是微服务架构的最终形态,因为它可以让业务代码和微服务架构解耦,也就是说业务代码不需要修改就能实现微服务架构,但解耦还不够彻底,使 ...