Kang B., Xie S., Rohrbach M., Yan Z., Gordo A., Feng J. and Kalantidis Y. Decoupling representation and classifier for long-tailed recognition. In International Conference on Learning Representations (ICLR), 2014.

本文通过拆解特征学习和分类器训练得出, Instance-sampling能学习到足够好的特征, 我们只需对分类器进行一些处理, 就能得到更好的处理结果.

主要内容

Sampling

针对长短尾的数据, 我们常用重采样的方式来应对, 一般的采样方式可以表述为如下的形式:

\[p_j = \frac{n_j^q}{\sum_{i=1}^C n_i^q}, \quad j = 1,2,\cdots, C
\]

其中\(p_j\)是采样第\(j\)类的概率, \(n_j\)是第\(j\)的训练数据的数目, 共有\(C\)类.

通过指定不同的\(q \in [0, 1]\), 有下面的不同采样方式:

  • Instance-balanced sampling: \(q=1\), 就是我们最常使用的, 每一个样本都是等概率被选中的;
  • Class-balanced sampling: \(q=0\), 可以看成先等概率选择采样的类, 再在此类中等概率选择样本;
  • Square-root sampling: \(q=1/2\);
  • Progressively-balanced sampling: 这是一个混合, 在训练的开始阶段, 偏向instance-balanced sampling, 在训练的后期阶段, 偏向class-balanced sampling:
\[p_j^{PB}(t) = (1 - \frac{t}{T})p_j^{IB} + \frac{t}{T} p_j^{CB}.
\]

分类器

分类器作者列举了三种:

  1. Classifier Re-training (cRT). 即固定encoder部分, 随机初始化\(W,b\), 然后重新训练它们(\(W^Tf + b\));
  2. Nearest Class Mean classifier (NCM). 首先对每个类计算归一化的均值, 然后看输入的特征和哪个最接近(\(\ell_2\)或者cosine 相似度);
  3. \(\tau\)-normalized classifier (\(\tau\)-normalized):
\[\widetilde{w}_i = \frac{w_i}{\|w_i\|^{\tau}},
\]

用\(\widetilde{w}_i\)替换\(w_i\), 其中\(\tau \in (0, 1)\). 因为作者认为\(\|w_i\|\)的大小反应了数据量的大小. \(\tau\)通过交叉验证的方式来选择;

4. Learnable weight scaling (LWS):

\[\widetilde{w}_i = f_i \cdot w_i, \quad f_i = \frac{1}{\|w_i\|^{\tau}},
\]

这里\(f_i\)是可学习的.

注: 这些分类器训练的时候, 也是可以应用re-balance方法的.

注: 按照作者的说明, 看来作者训练encoder的方式就是单纯联合训练, 我以为使用自监督方法.

代码

原文代码

Decoupling Representation and Classifier for Long-tailed Recognition的更多相关文章

  1. face recognition[翻译][深度人脸识别:综述]

    这里翻译下<Deep face recognition: a survey v4>. 1 引言 由于它的非侵入性和自然特征,人脸识别已经成为身份识别中重要的生物认证技术,也已经应用到许多领 ...

  2. cvpr2015papers

    @http://www-cs-faculty.stanford.edu/people/karpathy/cvpr2015papers/ CVPR 2015 papers (in nicer forma ...

  3. [ZZ]计算机视觉、机器学习相关领域论文和源代码大集合

    原文地址:[ZZ]计算机视觉.机器学习相关领域论文和源代码大集合作者:计算机视觉与模式 注:下面有project网站的大部分都有paper和相应的code.Code一般是C/C++或者Matlab代码 ...

  4. CV code references

    转:http://www.sigvc.org/bbs/thread-72-1-1.html 一.特征提取Feature Extraction:   SIFT [1] [Demo program][SI ...

  5. CV codes代码分类整理合集 《转》

    from:http://www.sigvc.org/bbs/thread-72-1-1.html 一.特征提取Feature Extraction:   SIFT [1] [Demo program] ...

  6. CVPR 2017 Paper list

    CVPR2017 paper list Machine Learning 1 Spotlight 1-1A Exclusivity-Consistency Regularized Multi-View ...

  7. 资源帖:CV代码库搜集

    2013计算机视觉代码合集一: 原文链接:http://www.yuanyong.org/blog/cv/cv-code-one 切记:一定要看原文链接 原文链接: http://blog.csdn. ...

  8. paper 156:专家主页汇总-计算机视觉-computer vision

    持续更新ing~ all *.files come from the author:http://www.cnblogs.com/findumars/p/5009003.html 1 牛人Homepa ...

  9. paper 141:some paper with ComputerCV、MachineLearning[转]

    copy from:http://blog.csdn.net/zouxy09/article/details/8550952 一.特征提取Feature Extraction: ·         S ...

随机推荐

  1. 深入理解mysql锁与事务隔离级别

    一.锁 1.锁的定义     锁即是一种用来协调多线程或进程并发使用同一共享资源的机制 2.锁的分类 从性能上分类:乐观锁和悲观锁 从数据库操作类型上分类:读锁和写锁 从操作粒度上分类:表锁和行锁 2 ...

  2. Qt最好用评价最高的是哪个版本?

    来源: http://www.qtcn.org/bbs/read-htm-tid-89455.html /// Qt4:    4.8.7      4.X 系列终结版本 Qt5 :   5.6 LT ...

  3. Azkaban(二)【WorkFlow案例实操】

    目录 1.使用步骤 2.案例: 1.hello word 2.作业依赖[dependsOn配置作业的依赖关系] 3.内嵌工作流 4.全局配置 [在开头通过config进行配置,后续可以通过${属性名} ...

  4. C++ 成绩排名

    1004 成绩排名 (20分)   读入 n(>)名学生的姓名.学号.成绩,分别输出成绩最高和成绩最低学生的姓名和学号. 输入格式: 每个测试输入包含 1 个测试用例,格式为 第 1 行:正整数 ...

  5. java网站架构设计

    涉及到的技术及工具:java,springmvc,ibatis,freemarker,mysql,mongdb,memcached,ehcache,maven. 一个网站不可能说一开始就是要设计一个能 ...

  6. android 跳到应用市场给软件评分

    1 String packetName = this.getPackageName(); 2 Uri uri = Uri.parse("market://details?id=" ...

  7. API测试最佳实践 - 身份验证

    适用等级:高级 1. 概况 身份验证通常被定义为是对某个资源的身份的确认的活动,这里面资源的身份指代的是API的消费者(或者说是调用者).一旦一个用户的身份验证通过了,他将被授权访问那些期待访问的资源 ...

  8. Spring Cloud集成RabbitMQ的使用

    同步 or 异步 前言:我们现在有一个用微服务架构模式开发的系统,系统里有一个商品服务和订单服务,且它们都是同步通信的. 目前我们商品服务和订单服务之间的通信方式是同步的,当业务扩大之后,如果还继续使 ...

  9. JSP中声明变量、方法

    在JSP页面中声明局部变量,全局变量,方法等 代码示例: <%@ page language="java" contentType="text/html; char ...

  10. 『与善仁』Appium基础 — 21、元素的基本操作

    目录 1.元素的基本操作说明 (1)点击操作 (2)清空操作 (3)输入操作 2.综合练习 1.元素的基本操作说明 (1)点击操作 点击操作:click()方法.(同Selenium中使用方式一致) ...