Decoupling Representation and Classifier for Long-tailed Recognition
概
本文通过拆解特征学习和分类器训练得出, Instance-sampling能学习到足够好的特征, 我们只需对分类器进行一些处理, 就能得到更好的处理结果.
主要内容
Sampling
针对长短尾的数据, 我们常用重采样的方式来应对, 一般的采样方式可以表述为如下的形式:
\]
其中\(p_j\)是采样第\(j\)类的概率, \(n_j\)是第\(j\)的训练数据的数目, 共有\(C\)类.
通过指定不同的\(q \in [0, 1]\), 有下面的不同采样方式:
- Instance-balanced sampling: \(q=1\), 就是我们最常使用的, 每一个样本都是等概率被选中的;
- Class-balanced sampling: \(q=0\), 可以看成先等概率选择采样的类, 再在此类中等概率选择样本;
- Square-root sampling: \(q=1/2\);
- Progressively-balanced sampling: 这是一个混合, 在训练的开始阶段, 偏向instance-balanced sampling, 在训练的后期阶段, 偏向class-balanced sampling:
\]
分类器
分类器作者列举了三种:
- Classifier Re-training (cRT). 即固定encoder部分, 随机初始化\(W,b\), 然后重新训练它们(\(W^Tf + b\));
- Nearest Class Mean classifier (NCM). 首先对每个类计算归一化的均值, 然后看输入的特征和哪个最接近(\(\ell_2\)或者cosine 相似度);
- \(\tau\)-normalized classifier (\(\tau\)-normalized):
\]
用\(\widetilde{w}_i\)替换\(w_i\), 其中\(\tau \in (0, 1)\). 因为作者认为\(\|w_i\|\)的大小反应了数据量的大小. \(\tau\)通过交叉验证的方式来选择;
4. Learnable weight scaling (LWS):
\]
这里\(f_i\)是可学习的.
注: 这些分类器训练的时候, 也是可以应用re-balance方法的.
注: 按照作者的说明, 看来作者训练encoder的方式就是单纯联合训练, 我以为使用自监督方法.
代码
Decoupling Representation and Classifier for Long-tailed Recognition的更多相关文章
- face recognition[翻译][深度人脸识别:综述]
这里翻译下<Deep face recognition: a survey v4>. 1 引言 由于它的非侵入性和自然特征,人脸识别已经成为身份识别中重要的生物认证技术,也已经应用到许多领 ...
- cvpr2015papers
@http://www-cs-faculty.stanford.edu/people/karpathy/cvpr2015papers/ CVPR 2015 papers (in nicer forma ...
- [ZZ]计算机视觉、机器学习相关领域论文和源代码大集合
原文地址:[ZZ]计算机视觉.机器学习相关领域论文和源代码大集合作者:计算机视觉与模式 注:下面有project网站的大部分都有paper和相应的code.Code一般是C/C++或者Matlab代码 ...
- CV code references
转:http://www.sigvc.org/bbs/thread-72-1-1.html 一.特征提取Feature Extraction: SIFT [1] [Demo program][SI ...
- CV codes代码分类整理合集 《转》
from:http://www.sigvc.org/bbs/thread-72-1-1.html 一.特征提取Feature Extraction: SIFT [1] [Demo program] ...
- CVPR 2017 Paper list
CVPR2017 paper list Machine Learning 1 Spotlight 1-1A Exclusivity-Consistency Regularized Multi-View ...
- 资源帖:CV代码库搜集
2013计算机视觉代码合集一: 原文链接:http://www.yuanyong.org/blog/cv/cv-code-one 切记:一定要看原文链接 原文链接: http://blog.csdn. ...
- paper 156:专家主页汇总-计算机视觉-computer vision
持续更新ing~ all *.files come from the author:http://www.cnblogs.com/findumars/p/5009003.html 1 牛人Homepa ...
- paper 141:some paper with ComputerCV、MachineLearning[转]
copy from:http://blog.csdn.net/zouxy09/article/details/8550952 一.特征提取Feature Extraction: · S ...
随机推荐
- 面向Web应用的并发压力测试工具——Locust实用攻略
1. 概述 该方案写作目的在于描述一个基于Locust实现的压力测试,文中详细地描述了如何利用locustfile.py文件定义期望达成的测试用例,并利用Locust对目标站点进行并发压力测试. 特别 ...
- acid, acknowledge, acquaint
acid sulphuric|hydrochloric|nitric|carbolic|citric|lactic|nucleic|amino acid: 硫|盐|硝|碳|柠檬|乳|核|氨基酸 王水是 ...
- 案例 stm32单片机,adc的双通道+dma 内部温度
可以这样理解 先配置adc :有几个通道就配置几个通道. 然后配置dma,dma是针对adc的,而不是针对通道的. 一开始我以为一个adc通道对应一个dma通道.(这里是错的,其实是我想复杂了) 一个 ...
- Windows zip版本安装MySQL
Windows --MySQL zip版本安装记录: step1. 官网download zip包:http://cdn.mysql.com//Downloads/MySQL-5.7/mysql-5. ...
- list.jsp页面
<%@ page contentType="text/html;charset=UTF-8" language="java" %><%@tag ...
- 使用jdbc,查询数据库数据,并将其封装为对象输出
package cn.itcast.jdbc;import cn.itcast.domain.User;import java.sql.*;import java.util.ArrayList;imp ...
- SpringSecurity Oauth2.0
1.用户认证分析 上面流程图描述了用户要操作的各个微服务,用户查看个人信息需要访问客户微服务,下单需要访问订单微服务,秒杀抢购商品需要访问秒杀微服务.每个服务都需要认证用户的身份,身份认证成功后,需要 ...
- 阿里巴巴Java开发手册摘要(二)
MySql数据库 一建表规约 1.表达是与否概念的字段,必须使用is_xxx的命名方式,数据类型是unsigned tinyint(1:是,0否) 正例:表达逻辑删除的字段名is_deleted,1表 ...
- 【C/C++】算法入门:排序/算法笔记
(设排序从小到大) 冒泡排序 这个大家都会,从第一个开始往后俩俩交换,然后第二个,最后到最后一个,复杂度n^2 选择排序 思路和冒泡差不多,比如要得到从小到大的排序,就是从第一个开始,i取1~n,每次 ...
- 设计模式和java实现
三种工厂模式:https://www.cnblogs.com/toutou/p/4899388.html 适配器模式:https://www.cnblogs.com/V1haoge/p/6479118 ...