Lu Z, Pu H, Wang F, et al. The expressive power of neural networks: a view from the width[C]. neural information processing systems, 2017: 6232-6240.

@article{lu2017the,

title={The expressive power of neural networks: a view from the width},

author={Lu, Zhou and Pu, Hongming and Wang, Feicheng and Hu, Zhiqiang and Wang, Liwei},

pages={6232--6240},

year={2017}}

Universal approximation theorem-wiki, 这个定理分成俩个部分, 第一个部分是Unbounded Width Case, 这篇文章是Bounded Width Case (ReLu网络).

主要内容

定理1

另外, 定理1中的网络由若干个(视\(\epsilon\)而定) blocks排列而成, 每个block具有以下性质:

  • depth: 4n+1, width: n+4 的神经网络
  • 在一个范围外其“函数值”为0
  • 它能够存储样本信息
  • 它会加总自身的信息和前面的逼近信息

定理2

定理3

定理4

定理1的证明

因为主要关注定理1, 所以讲下这个部分的证明(实际上是因为其它懒得看了).

假设\(x = (x_1, x_2,\ldots, x_n)\)为输入, \(f\)是\(L^1\)可积的, 对于任意的\(\epsilon > 0\), 存在\(N > 0\)满足

\[\int_{\cup_{i=1}^n|x_i| \ge N} |f| \mathrm{d}x < \frac{\epsilon}{2}.
\]

定义下列符号:

则我们有:

\[\int_{R^n} |f-(f_1 - f_2)| \mathrm{d}x < \frac{\epsilon}{2},
\]

对于\(i=1, 2\), 既然\(V_E^i\)是可测的(且测度小于\(+\infty\)), 则我们能找到有限个\(n+1\)维的矩体去逼近(原文用了cover, 但是我感觉这里用互不相交的矩体才合理), 并有

\[m(V_E^i \Delta \cup_j J_{j,i}) < \frac{\epsilon}{8},
\]

不出意外\(\Delta\)应该就是\.

假设\(J_{j,i}\)有\(n_i\)个, 且

每一个\(J_{j, i}\)对应一个指示函数:

\[\phi_{j,i}(x) = \left \{
\begin{array}{ll}
1 & x \in X_{j,i} \\
0 & x \not \in X_{j,i}.
\end{array} \right.
\]





这个在实变函数将多重积分, 提到的下方图形集有讲到.

于是我们有(\(-f_1-f_2+f_1+f_2-f+f\)然后拆开来就可以得到不等式)

现在我们要做的就是通过神经网络拟合\(\varphi_{j,i}\)去逼近\(\phi_{j,i}\), 使得

现在来讲, 如果构造这个神经网络:

一个block有4n+1层, 每层的width是n+4, 注意到所有层的前n个Node都是一样的用来保存样本信息. 我们用\(R_{i, j, \mathscr{B_k}}, i=1, 2, 3, 4, j=1,\ldots,n+4, k=1,\ldots, n,\) 表示第\(k\)个Unit(每个Unit有4层)的第\(i\)层的第\(j\)个Node.







注意: \(R_{2, n+3, \mathscr{B_1}}\)应该是\((x_1-a_1)^+/\delta\), 最开始的结构图中的对的. 我们来看一下, 什么样的\(x=(x_1, \ldots, x_n)\), 会使得\(L_1\)不为0.

如果\(x_1=a_1+\delta(b_1-a_1)+\epsilon\), 这里\(\epsilon>0\)是一个任意小量, 和上文中的\(\epsilon\)没有关系. 此时(当\(\delta<1/2\))

\[\frac{(x_1-b_1+\delta(b_1-a_1))^+}{\delta}= 0,
\]

当\(\delta\)足够小的时候

\[\frac{(x_1-a_1)^+}{\delta}= 0,
\]

此时\(L_1=1\), 类似地, 可以证明, 当\(\delta \rightarrow 0\)的时候, \(x_1 \in (a_1+\delta(b_1-a_1),b_1-\delta(b_1-a_1))\)时, \(L_1=1\), 否则为0.

\(R_{i, j, \mathscr{B_k}}\)的定义是类似的, 只是

\[L_k = ((L_{k-1}-(x_k-b_k+\delta(a_k-b_k))^+/\delta)^+- (1-(x_k-a_k)^+/\delta)^+)^+,
\]

可以证明, 当\(\delta\rightarrow 0\), 且\(x_t \in (a_t + \delta(b_t-a_t),b_t-\delta(b_t-a_t)), t=1,2,\ldots, k\)的时候, \(L_k=1.\), 这样我们就构造了一个指示函数, 如果这个这函数对应的\(i\)为1则将\(L_n\)存入n+1 Node, 否则 n+2 Node (实际上, 我感觉应该存的是\(b_{n+1,j,i}L_n\)), 则

这里\(\mu\)相当于\(L_n\). 所以多个blocks串联起来后, 我们就得到了一个函数, 且这个函数是我们想要的.





这个直接通过超距体体积计算得来的, 我们只需要取:







最后

令\(g:=\sum_{i=1}^2\sum_{j=1}^{n_i}(-1)^{i+1}b_{n+1,j,i}\mu_{j,i}\),便有



此即定理1的证明.

The Expressive Power of Neural Networks: A View from the Width的更多相关文章

  1. Deep learning_CNN_Review:A Survey of the Recent Architectures of Deep Convolutional Neural Networks——2019

    CNN综述文章 的翻译 [2019 CVPR] A Survey of the Recent Architectures of Deep Convolutional Neural Networks 翻 ...

  2. 课程一(Neural Networks and Deep Learning),第一周(Introduction to Deep Learning)—— 2、10个测验题

    1.What does the analogy “AI is the new electricity” refer to?  (B) A. Through the “smart grid”, AI i ...

  3. Non-local Neural Networks

    1. 摘要 卷积和循环神经网络中的操作都是一次处理一个局部邻域,在这篇文章中,作者提出了一个非局部的操作来作为捕获远程依赖的通用模块. 受计算机视觉中经典的非局部均值方法启发,我们的非局部操作计算某一 ...

  4. tensorfolw配置过程中遇到的一些问题及其解决过程的记录(配置SqueezeDet: Unified, Small, Low Power Fully Convolutional Neural Networks for Real-Time Object Detection for Autonomous Driving)

    今天看到一篇关于检测的论文<SqueezeDet: Unified, Small, Low Power Fully Convolutional Neural Networks for Real- ...

  5. [C3] Andrew Ng - Neural Networks and Deep Learning

    About this Course If you want to break into cutting-edge AI, this course will help you do so. Deep l ...

  6. 提高神经网络的学习方式Improving the way neural networks learn

    When a golf player is first learning to play golf, they usually spend most of their time developing ...

  7. 深度卷积神经网络用于图像缩放Image Scaling using Deep Convolutional Neural Networks

    This past summer I interned at Flipboard in Palo Alto, California. I worked on machine learning base ...

  8. 卷积神经网络用于视觉识别Convolutional Neural Networks for Visual Recognition

    Table of Contents: Architecture Overview ConvNet Layers Convolutional Layer Pooling Layer Normalizat ...

  9. Image Scaling using Deep Convolutional Neural Networks

    Image Scaling using Deep Convolutional Neural Networks This past summer I interned at Flipboard in P ...

随机推荐

  1. day34 前端基础之JavaScript

    day34 前端基础之JavaScript ECMAScript 6 尽管 ECMAScript 是一个重要的标准,但它并不是 JavaScript 唯一的部分,当然,也不是唯一被标准化的部分.实际上 ...

  2. React 16.13.1触发两次render

    一段很普通的代码,出发了两次render import React, { useState, useEffect } from 'react' const MouseTracker: React.FC ...

  3. 商业爬虫学习笔记day7-------解析方法之bs4

    一.Beautiful Soup 1.简介 Beautiful Soup 是python的一个库,最主要的功能是从网页抓取数据.其特点如下(这三个特点正是bs强大的原因,来自官方手册) a. Beau ...

  4. [转]sizeof计算空间大小的总结

    原文链接:http://www.cnblogs.com/houjun/p/4907622.html 关于sizeof的总结 1.sizeof的使用形式:sizeof(var_name)或者sizeof ...

  5. Map集合的认识和理解

    java.util.Map(k,v)集合* Map的特点:* 1.Map集合是一个双列集合,一个元素包含两个值(一个是key,一个是Value)* 2.Map集合中的元素,key和value的类型可以 ...

  6. 30个类手写Spring核心原理之MVC映射功能(4)

    本文节选自<Spring 5核心原理> 接下来我们来完成MVC模块的功能,应该不需要再做说明.Spring MVC的入口就是从DispatcherServlet开始的,而前面的章节中已完成 ...

  7. 代码图形统计工具git_stats web

    目录 一.简介 二.安装ruby 三.配置git_stats 四.通过nginx把网页展示出来 一.简介 仓库代码统计工具之一,可以按git提交人.提交次数.修改文件数.代码行数.注释量在时间维度上进 ...

  8. 转:Sed使用

    awk于1977年出生,今年36岁本命年,sed比awk大2-3岁,awk就像林妹妹,sed就是宝玉哥哥了.所以 林妹妹跳了个Topless,他的哥哥sed坐不住了,也一定要出来抖一抖. sed全名叫 ...

  9. 自动化测试环境搭建之Python3.6+selenium44+firefox

    推荐使用: Python3.6+selenium2.53.6+Firefox46以下 +[Chrome任意版本+对应版本webdriver] ----------------------------- ...

  10. Linux centos 安装Docker

    安装docker需要centos7 内核3.1以上 基本上centos7以上的都支持, 然后先更新到最新 sudo yum update 然后直接安装 sudo yum install docker ...