TensorFlow Tutorial

  • Initialize variables
  • Start your own session
  • Train algorithms
  • Implement a Neural Network

1. Exploring the Tensorflow Library

To start, you will import the library:

import math
import numpy as np
import h5py
import matplotlib.pyplot as plt
import tensorflow as tf
from tensorflow.python.framework import ops
from tf_utils import load_dataset, random_mini_batches, convert_to_one_hot, predict %matplotlib inline
np.random.seed(1)

Now that you have imported the library, we will walk you through its different applications. You will start with an example, where we compute for you the loss of one training example.

\[loss = \mathcal{L}(\hat{y}, y) = (\hat y^{(i)} - y^{(i)})^2 \tag{1}
\]
y_hat = tf.constant(36, name='y_hat')            # Define y_hat constant. Set to 36.
y = tf.constant(39, name='y') # Define y. Set to 39 loss = tf.Variable((y - y_hat)**2, name='loss') # Create a variable for the loss init = tf.global_variables_initializer() # When init is run later (session.run(init)),
# the loss variable will be initialized and ready to be computed
with tf.Session() as session: # Create a session and print the output
session.run(init) # Initializes the variables
print(session.run(loss)) # Prints the loss

Writing and running programs in TensorFlow has the following steps:

  1. Create Tensors (variables) that are not yet executed/evaluated.
  2. Write operations between those Tensors.
  3. Initialize your Tensors.
  4. Create a Session.
  5. Run the Session. This will run the operations you'd written above.

1.1 - Linear function

Lets start this programming exercise by computing the following equation: \(Y = WX + b\), where \(W\) and \(X\) are random matrices and b is a random vector.

Exercise: Compute \(WX + b\) where \(W, X\), and \(b\) are drawn from a random normal distribution. W is of shape (4, 3), X is (3,1) and b is (4,1). As an example, here is how you would define a constant X that has shape (3,1):

X = tf.constant(np.random.randn(3,1), name = "X")

You might find the following functions helpful:

  • tf.matmul(..., ...) to do a matrix multiplication
  • tf.add(..., ...) to do an addition
  • np.random.randn(...) to initialize randomly
# GRADED FUNCTION: linear_function

def linear_function():
"""
Implements a linear function:
Initializes W to be a random tensor of shape (4,3)
Initializes X to be a random tensor of shape (3,1)
Initializes b to be a random tensor of shape (4,1)
Returns:
result -- runs the session for Y = WX + b
""" np.random.seed(1) ### START CODE HERE ### (4 lines of code)
W = tf.constant(np.random.randn(4, 3), name='W')
X = tf.constant(np.random.randn(3, 1), name='X')
b = tf.constant(np.random.randn(4, 1), name='b')
Y = tf.add(tf.matmul(W, X), b)
### END CODE HERE ### # Create the session using tf.Session() and run it with sess.run(...) on the variable you want to calculate ### START CODE HERE ###
sess = tf.Session()
result = sess.run(Y)
### END CODE HERE ### # close the session
sess.close() return result

1.2 - Computing the sigmoid

Great! You just implemented a linear function. Tensorflow offers a variety of commonly used neural network functions like tf.sigmoid and tf.softmax. For this exercise lets compute the sigmoid function of an input.

You will do this exercise using a placeholder variable x. When running the session, you should use the feed dictionary to pass in the input z. In this exercise, you will have to (i) create a placeholder x, (ii) define the operations needed to compute the sigmoid using tf.sigmoid, and then (iii) run the session.

** Exercise **: Implement the sigmoid function below. You should use the following:

  • tf.placeholder(tf.float32, name = "...")
  • tf.sigmoid(...)
  • sess.run(..., feed_dict = {x: z})

Note that there are two typical ways to create and use sessions in tensorflow:

Method 1:

sess = tf.Session()
# Run the variables initialization (if needed), run the operations
result = sess.run(..., feed_dict = {...})
sess.close() # Close the session

Method 2:

with tf.Session() as sess:
# run the variables initialization (if needed), run the operations
result = sess.run(..., feed_dict = {...})
# This takes care of closing the session for you :)
print ("sigmoid(0) = " + str(sigmoid(0)))
print ("sigmoid(12) = " + str(sigmoid(12)))

输出:

sigmoid(0) = 0.5

sigmoid(12) = 0.9999942

**To summarize, you how know how to**:
1. Create placeholders
2. Specify the computation graph corresponding to operations you want to compute
3. Create the session
4. Run the session, using a feed dictionary if necessary to specify placeholder variables' values.

1.3 - Computing the Cost

You can also use a built-in function to compute the cost of your neural network. So instead of needing to write code to compute this as a function of \(a^{[2](i)}\) and \(y^{(i)}\) for i=1...m:

\[J = - \frac{1}{m} \sum_{i = 1}^m \large ( \small y^{(i)} \log a^{ [2] (i)} + (1-y^{(i)})\log (1-a^{ [2] (i)} )\large )\small\tag{2}
\]

you can do it in one line of code in tensorflow!

Exercise: Implement the cross entropy loss. The function you will use is:

  • tf.nn.sigmoid_cross_entropy_with_logits(logits = ..., labels = ...)

Your code should input z, compute the sigmoid (to get a) and then compute the cross entropy cost \(J\). All this can be done using one call to tf.nn.sigmoid_cross_entropy_with_logits, which computes

\[- \frac{1}{m} \sum_{i = 1}^m \large ( \small y^{(i)} \log \sigma(z^{[2](i)}) + (1-y^{(i)})\log (1-\sigma(z^{[2](i)})\large )\small\tag{2}
\]
# GRADED FUNCTION: cost

def cost(logits, labels):
"""
    Computes the cost using the sigmoid cross entropy
    
    Arguments:
    logits -- vector containing z, output of the last linear unit (before the final sigmoid activation)
    labels -- vector of labels y (1 or 0) Note: What we've been calling "z" and "y" in this class are respectively called "logits" and "labels"
in the TensorFlow documentation. So logits will feed into z, and labels into y.
    
    Returns:
    cost -- runs the session of the cost (formula (2))
""" ### START CODE HERE ###
z = tf.placeholder(tf.float32, name='z')
y = tf.placeholder(tf.float32, name='y') # Use the loss function (approx. 1 line)
cost = tf.nn.sigmoid_cross_entropy_with_logits(logits=z, labels=y) # Create a session (approx. 1 line). See method 1 above.
sess = tf.Session() # Run the session (approx. 1 line).
cost = sess.run(cost, feed_dict={z: logits, y:labels}) # Close the session (approx. 1 line). See method 1 above.
sess.close() ### END CODE HERE ### return cost
logits = sigmoid(np.array([0.2,0.4,0.7,0.9]))
cost = cost(logits, np.array([0,0,1,1]))
print ("cost = " + str(cost))

cost = [ 1.00538719 1.03664088 0.41385433 0.39956614]

1.4 - Using One Hot encodings

Many times in deep learning you will have a y vector with numbers ranging from 0 to C-1, where C is the number of classes. If C is for example 4, then you might have the following y vector which you will need to convert as follows:

This is called a "one hot" encoding, because in the converted representation exactly one element of each column is "hot" (meaning set to 1). To do this conversion in numpy, you might have to write a few lines of code. In tensorflow, you can use one line of code:

  • tf.one_hot(labels, depth, axis)

Exercise: Implement the function below to take one vector of labels and the total number of classes \(C\), and return the one hot encoding. Use tf.one_hot() to do this.

# GRADED FUNCTION: one_hot_matrix

def one_hot_matrix(labels, C):
"""
Creates a matrix where the i-th row corresponds to the ith class number and the jth column
corresponds to the jth training example. So if example j had a label i. Then entry (i,j)
will be 1. Arguments:
labels -- vector containing the labels
C -- number of classes, the depth of the one hot dimension Returns:
one_hot -- one hot matrix
""" ### START CODE HERE ### # Create a tf.constant equal to C (depth), name it 'C'. (approx. 1 line)
C = tf.constant(C, name='C') # Use tf.one_hot, be careful with the axis (approx. 1 line)
one_hot_matrix = tf.one_hot(indices=labels, depth=C, axis=0) # Create the session (approx. 1 line)
sess = tf.Session() # Run the session (approx. 1 line)
one_hot = sess.run(one_hot_matrix) # Close the session (approx. 1 line). See method 1 above.
sess.close() ### END CODE HERE ### return one_hot

输出:

labels = np.array([1,2,3,0,2,1])
one_hot = one_hot_matrix(labels, C = 4)
print ("one_hot = " + str(one_hot))

1.5 - Initialize with zeros and ones

Now you will learn how to initialize a vector of zeros and ones. The function you will be calling is tf.ones(). To initialize with zeros you could use tf.zeros() instead. These functions take in a shape and return an array of dimension shape full of zeros and ones respectively.

Exercise: Implement the function below to take in a shape and to return an array (of the shape's dimension of ones).

  • tf.ones(shape)
# GRADED FUNCTION: ones

def ones(shape):
"""
Creates an array of ones of dimension shape Arguments:
shape -- shape of the array you want to create Returns:
ones -- array containing only ones
""" ### START CODE HERE ### # Create "ones" tensor using tf.ones(...). (approx. 1 line)
ones = tf.ones(shape) # Create the session (approx. 1 line)
sess = tf.Session() # Run the session to compute 'ones' (approx. 1 line)
ones = sess.run(ones) # Close the session (approx. 1 line). See method 1 above.
sess.close() ### END CODE HERE ###
return ones

测试:

print ("ones = " + str(ones([3])))

2 - Building your first neural network in tensorflow

In this part of the assignment you will build a neural network using tensorflow. Remember that there are two parts to implement a tensorflow model:

  • Create the computation graph
  • Run the graph

Let's delve into the problem you'd like to solve!

2.0 - Problem statement: SIGNS Dataset

手势数字识别

  • Training set: 1080 pictures (64 by 64 pixels) of signs representing numbers from 0 to 5 (180 pictures per number).
  • Test set: 120 pictures (64 by 64 pixels) of signs representing numbers from 0 to 5 (20 pictures per number).

Note that this is a subset of the SIGNS dataset. The complete dataset contains many more signs.

Here are examples for each number, and how an explanation of how we represent the labels. These are the original pictures, before we lowered the image resolutoion to 64 by 64 pixels.

Figure 1: SIGNS dataset

Run the following code to load the dataset.

# Loading the dataset
X_train_orig, Y_train_orig, X_test_orig, Y_test_orig, classes = load_dataset()

Change the index below and run the cell to visualize some examples in the dataset.

# Example of a picture
index = 0
plt.imshow(X_train_orig[index])
print ("y = " + str(np.squeeze(Y_train_orig[:, index])))

y = 4

像往常那样flatten图像数据,并且用 x /= 255. 正则化数据。除此之外,你需要转换每个数字标签,为一个 one-hot向量,如 Figure 1.

# Flatten the training and test images
X_train_flatten = X_train_orig.reshape(X_train_orig.shape[0], -1).T
X_test_flatten = X_test_orig.reshape(X_test_orig.shape[0], -1).T
# Normalize image vectors
X_train = X_train_flatten/255.
X_test = X_test_flatten/255.
# Convert training and test labels to one hot matrices
Y_train = convert_to_one_hot(Y_train_orig, 6)
Y_test = convert_to_one_hot(Y_test_orig, 6) print ("number of training examples = " + str(X_train.shape[1]))
print ("number of test examples = " + str(X_test.shape[1]))
print ("X_train shape: " + str(X_train.shape))
print ("Y_train shape: " + str(Y_train.shape))
print ("X_test shape: " + str(X_test.shape))
print ("Y_test shape: " + str(Y_test.shape))

number of training examples = 1080

number of test examples = 120

X_train shape: (12288, 1080)

Y_train shape: (6, 1080)

X_test shape: (12288, 120)

Y_test shape: (6, 120)

Note that 12288 comes from \(64 \times 64 \times 3\). Each image is square, 64 by 64 pixels, and 3 is for the RGB colors. Please make sure all these shapes make sense to you before continuing.

Your goal is to build an algorithm capable of recognizing a sign with high accuracy. To do so, you are going to build a tensorflow model that is almost the same as one you have previously built in numpy for cat recognition (but now using a softmax output).

The model is LINEAR -> RELU -> LINEAR -> RELU -> LINEAR -> SOFTMAX. (要输出多个分类)

2.1 - Create placeholders

Your first task is to create placeholders for X and Y. This will allow you to later pass your training data in when you run your session.

Exercise: Implement the function below to create the placeholders in tensorflow.

# GRADED FUNCTION: create_placeholders

def create_placeholders(n_x, n_y):
"""
Creates the placeholders for the tensorflow session. Arguments:
n_x -- scalar, size of an image vector (num_px * num_px = 64 * 64 * 3 = 12288)
n_y -- scalar, number of classes (from 0 to 5, so -> 6) Returns:
X -- placeholder for the data input, of shape [n_x, None] and dtype "float"
Y -- placeholder for the input labels, of shape [n_y, None] and dtype "float" Tips:
- You will use None because it let's us be flexible on the number of examples you will for the placeholders.
In fact, the number of examples during test/train is different.
""" ### START CODE HERE ### (approx. 2 lines)
X = tf.placeholder(tf.float32, shape=[n_x, None], name='X')
Y = tf.placeholder(tf.float32, shape=[n_y, None], name='Y')
### END CODE HERE ### return X, Y
X, Y = create_placeholders(12288, 6)
print ("X = " + str(X))
print ("Y = " + str(Y))

X = Tensor("X_1:0", shape=(12288, ?), dtype=float32)

Y = Tensor("Y:0", shape=(6, ?), dtype=float32)

2.2 - Initializing the parameters

initialize the parameters in tensorflow.

Exercise: 在TensorFlow中初始化参数. 用 Xavier Initialization 对 weights 并且用 Zero Initialization for biases. As an example, to help you, for W1 and b1 you could use:

W1 = tf.get_variable("W1", [25,12288], initializer = tf.contrib.layers.xavier_initializer(seed = 1))
b1 = tf.get_variable("b1", [25,1], initializer = tf.zeros_initializer())

Please use seed = 1 to make sure your results match ours.

# GRADED FUNCTION: initialize_parameters

def initialize_parameters():
"""
Initializes parameters to build a neural network with tensorflow. The shapes are:
W1 : [25, 12288]
b1 : [25, 1]
W2 : [12, 25]
b2 : [12, 1]
W3 : [6, 12]
b3 : [6, 1] Returns:
parameters -- a dictionary of tensors containing W1, b1, W2, b2, W3, b3
""" tf.set_random_seed(1) # so that your "random" numbers match ours ### START CODE HERE ### (approx. 6 lines of code)
W1 = tf.get_variable("W1", [25, 12288], initializer=tf.contrib.layers.xavier_initializer(seed=1))
b1 = tf.get_variable("b1", [25, 1], initializer=tf.zeros_initializer())
W2 = tf.get_variable("W2", [12, 25], initializer=tf.contrib.layers.xavier_initializer(seed=1))
b2 = tf.get_variable("b2", [12, 1], initializer=tf.zeros_initializer())
W3 = tf.get_variable("W3", [6, 12], initializer=tf.contrib.layers.xavier_initializer(seed=1))
b3 = tf.get_variable("b3", [6, 1], initializer=tf.zeros_initializer()) ### END CODE HERE ### parameters = {"W1": W1,
"b1": b1,
"W2": W2,
"b2": b2,
"W3": W3,
"b3": b3} return parameters
tf.reset_default_graph()
with tf.Session() as sess:
parameters = initialize_parameters()
print("W1 = " + str(parameters["W1"]))
print("b1 = " + str(parameters["b1"]))
print("W2 = " + str(parameters["W2"]))
print("b2 = " + str(parameters["b2"]))

W1 = <tf.Variable 'W1:0' shape=(25, 12288) dtype=float32_ref>

b1 = <tf.Variable 'b1:0' shape=(25, 1) dtype=float32_ref>

W2 = <tf.Variable 'W2:0' shape=(12, 25) dtype=float32_ref>

b2 = <tf.Variable 'b2:0' shape=(12, 1) dtype=float32_ref>

2.3 - Forward propagation in tensorflow

implement the forward propagation module in tensorflow. The function will take in a dictionary of parameters and it will complete the forward pass. The functions you will be using are:

  • tf.add(...,...) to do an addition
  • tf.matmul(...,...) to do a matrix multiplication(矩阵乘法)
  • tf.nn.relu(...) to apply the ReLU activation

Question: Implement the forward pass of the neural network. We commented for you the numpy equivalents so that you can compare the tensorflow implementation to numpy. It is important to note that the forward propagation stops at z3. The reason is that in tensorflow the last linear layer output is given as input to the function computing the loss. Therefore, you don't need a3!

# GRADED FUNCTION: forward_propagation

def forward_propagation(X, parameters):
"""
Implements the forward propagation for the model: LINEAR -> RELU -> LINEAR -> RELU -> LINEAR -> SOFTMAX Arguments:
X -- input dataset placeholder, of shape (input size, number of examples)
parameters -- python dictionary containing your parameters "W1", "b1", "W2", "b2", "W3", "b3"
the shapes are given in initialize_parameters Returns:
Z3 -- the output of the last LINEAR unit
""" # Retrieve the parameters from the dictionary "parameters"
W1 = parameters['W1']
b1 = parameters['b1']
W2 = parameters['W2']
b2 = parameters['b2']
W3 = parameters['W3']
b3 = parameters['b3'] ### START CODE HERE ### (approx. 5 lines) # Numpy Equivalents:
Z1 = tf.add(tf.matmul(W1, X), b1) # Z1 = np.dot(W1, X) + b1
A1 = tf.nn.relu(Z1) # A1 = relu(Z1)
Z2 = tf.add(tf.matmul(W2, A1), b2) # Z2 = np.dot(W2, a1) + b2
A2 = tf.nn.relu(Z2) # A2 = relu(Z2)
Z3 = tf.add(tf.matmul(W3, A2), b3) # Z3 = np.dot(W3,Z2) + b3
### END CODE HERE ### return Z3
tf.reset_default_graph()

with tf.Session() as sess:
X, Y = create_placeholders(12288, 6)
parameters = initialize_parameters()
Z3 = forward_propagation(X, parameters)
print("Z3 = " + str(Z3))

2.4 - Compute cost

As seen before, it is very easy to compute the cost using:

tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits = ..., labels = ...))

Question: Implement the cost function below.

  • It is important to know that the "logits" and "labels" inputs of tf.nn.softmax_cross_entropy_with_logits are expected to be of shape (number of examples, num_classes). We have thus transposed Z3 and Y for you.
  • Besides, tf.reduce_mean basically does the summation over the examples.
# GRADED FUNCTION: compute_cost 

def compute_cost(Z3, Y):
"""
Computes the cost Arguments:
Z3 -- output of forward propagation (output of the last LINEAR unit), of shape (6, number of examples)
Y -- "true" labels vector placeholder, same shape as Z3 Returns:
cost - Tensor of the cost function
""" # to fit the tensorflow requirement for tf.nn.softmax_cross_entropy_with_logits(...,...)
logits = tf.transpose(Z3) # 转置
labels = tf.transpose(Y) ### START CODE HERE ### (1 line of code)
# tf.reduce_mean 函数用于计算张量tensor沿着指定的数轴(tensor的某一维度)上的的平均值,
# 主要用作降维或者计算tensor(图像)的平均值。
cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits=logits,
labels=labels)) ### END CODE HERE ### return cost
tf.reset_default_graph()

with tf.Session() as sess:
X, Y = create_placeholders(12288, 6)
parameters = initialize_parameters()
Z3 = forward_propagation(X, parameters)
cost = compute_cost(Z3, Y)
print("cost = " + str(cost))

cost = Tensor("Mean:0", shape=(), dtype=float32)

2.5 - Backward propagation & parameter updates

All the backpropagation and the parameters update is taken care of in 1 line of code.

After you compute the cost function. You will create an "optimizer" object. 选择优化函数(optimization) 和 learning rate 最小化代价。

For instance, for gradient descent the optimizer would be:

optimizer = tf.train.GradientDescentOptimizer(learning_rate = learning_rate).minimize(cost)

To make the optimization you would do:

_ , c = sess.run([optimizer, cost], feed_dict={X: minibatch_X, Y: minibatch_Y})

This computes the backpropagation by passing through the tensorflow graph in the reverse order. From cost to inputs.

Note When coding, we often use _ as a "throwaway" variable to store values that we won't need to use later. Here, _ takes on the evaluated value of optimizer, which we don't need (and c takes the value of the cost variable).

2.6 - Building the model

Now, you will bring it all together!

Exercise: Implement the model. You will be calling the functions you had previously implemented.

def model(X_train, Y_train, X_test, Y_test, learning_rate = 0.0001,
num_epochs = 1500, minibatch_size = 32, print_cost = True):
"""
Implements a three-layer tensorflow neural network: LINEAR->RELU->LINEAR->RELU->LINEAR->SOFTMAX. Arguments:
X_train -- training set, of shape (input size = 12288, number of training examples = 1080)
Y_train -- test set, of shape (output size = 6, number of training examples = 1080)
X_test -- training set, of shape (input size = 12288, number of training examples = 120)
Y_test -- test set, of shape (output size = 6, number of test examples = 120)
learning_rate -- learning rate of the optimization
num_epochs -- number of epochs of the optimization loop
minibatch_size -- size of a minibatch
print_cost -- True to print the cost every 100 epochs Returns:
parameters -- parameters learnt by the model. They can then be used to predict.
""" ops.reset_default_graph() # to be able to rerun the model without overwriting tf variables
tf.set_random_seed(1) # to keep consistent results
seed = 3 # to keep consistent results
(n_x, m) = X_train.shape # (n_x: input size, m : number of examples in the train set)
n_y = Y_train.shape[0] # n_y : output size
costs = [] # To keep track of the cost # Create Placeholders of shape (n_x, n_y)
### START CODE HERE ### (1 line)
X, Y = create_placeholders(n_x, n_y)
### END CODE HERE ### # Initialize parameters
### START CODE HERE ### (1 line)
parameters = initialize_parameters()
### END CODE HERE ### # Forward propagation: Build the forward propagation in the tensorflow graph
### START CODE HERE ### (1 line)
Z3 = forward_propagation(X, parameters)
### END CODE HERE ### # Cost function: Add cost function to tensorflow graph
### START CODE HERE ### (1 line)
cost = compute_cost(Z3, Y)
### END CODE HERE ### # Backpropagation: Define the tensorflow optimizer. Use an AdamOptimizer.
### START CODE HERE ### (1 line)
optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate).minimize(cost)
### END CODE HERE ### # Initialize all the variables
init = tf.global_variables_initializer() # Start the session to compute the tensorflow graph
with tf.Session() as sess: # Run the initialization
sess.run(init) # Do the training loop
for epoch in range(num_epochs): epoch_cost = 0. # Defines a cost related to an epoch
num_minibatches = int(m / minibatch_size) # number of minibatches of size minibatch_size in the train set
seed = seed + 1
minibatches = random_mini_batches(X_train, Y_train, minibatch_size, seed) for minibatch in minibatches: # Select a minibatch
(minibatch_X, minibatch_Y) = minibatch # IMPORTANT: The line that runs the graph on a minibatch.
# Run the session to execute the "optimizer" and the "cost", the feedict should contain a minibatch for (X,Y).
### START CODE HERE ### (1 line)
_, minibatch_cost = sess.run([optimizer, cost],
feed_dict={X: minibatch_X,
Y: minibatch_Y})
### END CODE HERE ### epoch_cost += minibatch_cost / num_minibatches # Print the cost every epoch
if print_cost == True and epoch % 100 == 0:
print ("Cost after epoch %i: %f" % (epoch, epoch_cost))
if print_cost == True and epoch % 5 == 0:
costs.append(epoch_cost) # plot the cost
plt.plot(np.squeeze(costs))
plt.ylabel('cost')
plt.xlabel('iterations (per tens)')
plt.title("Learning rate =" + str(learning_rate))
plt.show() # lets save the parameters in a variable
parameters = sess.run(parameters)
print ("Parameters have been trained!") # Calculate the correct predictions
correct_prediction = tf.equal(tf.argmax(Z3), tf.argmax(Y)) # Calculate accuracy on the test set
accuracy = tf.reduce_mean(tf.cast(correct_prediction, "float")) print ("Train Accuracy:", accuracy.eval({X: X_train, Y: Y_train}))
print ("Test Accuracy:", accuracy.eval({X: X_test, Y: Y_test})) return parameters
parameters = model(X_train, Y_train, X_test, Y_test)

Cost after epoch 0: 1.855702

Cost after epoch 100: 1.016458

Cost after epoch 200: 0.733102

Cost after epoch 300: 0.572939

Cost after epoch 400: 0.468774

Cost after epoch 500: 0.381021

Cost after epoch 600: 0.313827

Cost after epoch 700: 0.254280

Cost after epoch 800: 0.203799

Cost after epoch 900: 0.166512

Cost after epoch 1000: 0.140937

Cost after epoch 1100: 0.107750

Cost after epoch 1200: 0.086299

Cost after epoch 1300: 0.060949

Cost after epoch 1400: 0.050934

Parameters have been trained!

Train Accuracy: 0.999074

Test Accuracy: 0.725

2.7 - Test with your own image

# import scipy
# from PIL import Image
# from scipy import ndimage
import imageio
from skimage.transform import resize ## START CODE HERE ## (PUT YOUR IMAGE NAME)
my_image = "thumbs_up.jpg"
## END CODE HERE ## # We preprocess your image to fit your algorithm.
fname = "images/" + my_image
# image = np.array(ndimage.imread(fname, flatten=False))
# my_image = scipy.misc.imresize(image, size=(64,64)).reshape((1, 64*64*3)).T image = np.array(imageio.imread(fname)) # 读入图片为矩阵, 这里用原版本的会出错,scipy的那个函数被删了
# print(image.shape)
# 转置图片为 (num_px*num_px*3, 1)向量
my_image = resize(image, output_shape=(64, 64)).reshape((1, 64 * 64 * 3)).T
# print(my_image) my_image_prediction = predict(my_image, parameters) plt.imshow(image)
print("Your algorithm predicts: y = " + str(np.squeeze(my_image_prediction)))

改善深层神经网络-week3编程题(Tensorflow 实现手势识别 )的更多相关文章

  1. 改善深层神经网络-week1编程题(Initializaion)

    Initialization 如何选择初始化方式,不同的初始化会导致不同的结果 好的初始化方式: 加速梯度下降的收敛(Speed up the convergence of gradient desc ...

  2. 改善深层神经网络-week1编程题(Regularization)

    Regularization Deep Learning models have so much flexibility and capacity that overfitting can be a ...

  3. 改善深层神经网络-week1编程题(GradientChecking)

    1. Gradient Checking 你被要求搭建一个Deep Learning model来检测欺诈,每当有人付款,你想知道是否该支付可能是欺诈,例如该用户的账户可能已经被黑客掉. 但是,反向传 ...

  4. 改善深层神经网络-week2编程题(Optimization Methods)

    1. Optimization Methods Gradient descent goes "downhill" on a cost function \(J\). Think o ...

  5. deeplearning.ai 改善深层神经网络 week3 超参数调试、Batch正则化和程序框架 听课笔记

    这一周的主体是调参. 1. 超参数:No. 1最重要,No. 2其次,No. 3其次次. No. 1学习率α:最重要的参数.在log取值空间随机采样.例如取值范围是[0.001, 1],r = -4* ...

  6. deeplearning.ai 改善深层神经网络 week3 超参数调试、Batch Normalization和程序框架

    这一周的主体是调参. 1. 超参数:No. 1最重要,No. 2其次,No. 3其次次. No. 1学习率α:最重要的参数.在log取值空间随机采样.例如取值范围是[0.001, 1],r = -4* ...

  7. 改善深层神经网络_优化算法_mini-batch梯度下降、指数加权平均、动量梯度下降、RMSprop、Adam优化、学习率衰减

    1.mini-batch梯度下降 在前面学习向量化时,知道了可以将训练样本横向堆叠,形成一个输入矩阵和对应的输出矩阵: 当数据量不是太大时,这样做当然会充分利用向量化的优点,一次训练中就可以将所有训练 ...

  8. [DeeplearningAI笔记]改善深层神经网络_深度学习的实用层面1.10_1.12/梯度消失/梯度爆炸/权重初始化

    觉得有用的话,欢迎一起讨论相互学习~Follow Me 1.10 梯度消失和梯度爆炸 当训练神经网络,尤其是深度神经网络时,经常会出现的问题是梯度消失或者梯度爆炸,也就是说当你训练深度网络时,导数或坡 ...

  9. deeplearning.ai 改善深层神经网络 week1 深度学习的实用层面 听课笔记

    1. 应用机器学习是高度依赖迭代尝试的,不要指望一蹴而就,必须不断调参数看结果,根据结果再继续调参数. 2. 数据集分成训练集(training set).验证集(validation/develop ...

随机推荐

  1. 连接Redis服务

    1.命令 redis-cli -h host -p port -a password 2.参数 host:远程redis服务器host port:远程redis服务端口 password:远程redi ...

  2. Jenkins持续集成接口压测

    步骤 自动化压测- jmeter + shell Jenkins与jmeter压测,环境要求 自动压测运行逻辑 Jmeter输出压力测试报告 压测报告与Jenkins集成 Jenkins任务:源码同步 ...

  3. Delphi使用AcroPDF ActiveX显示PDF文件

    效果展示 调用方式 放入窗体即可使用,不想安装太多组件,可使用纯代码方式调用 interface ..... var AcroPDF: TAcroPDF; .... implementation .. ...

  4. Qt+Python开发百度图片下载器

    一.资源下载地址 https://www.aliyundrive.com/s/jBU2wBS8poH 本项目路径:项目->收费->百度图片下载器(可试用5分钟) 安装包直接下载地址:htt ...

  5. HDFS基本命令

    1.创建目录 hadoop dfs -mkdir /data hadoop dfs -mkdir -p /data/data1   创建多级目录 2.查看文件 hadoop dfs -ls / 3.上 ...

  6. PTA面向对象程序设计6-3 面积计算器(函数重载)

    实现一个面积计算器,它能够计算矩形或长方体的面积. 函数接口定义: int area(int x, int y); int area(int x, int y, int z); 第一个函数计算长方形的 ...

  7. 一起学习PHP中断言函数的使用

    原来一直以为断言相关的函数是 PHPUnit 这些单元测试组件提供的,在阅读手册后才发现,这个 assert() 断言函数是 PHP 本身就自带的一个函数.也就是说,我们在代码中进行简单的测试的时候是 ...

  8. 执行sudo apt-get update,连接失败

    问题:sudo apt-get update连接失败 错误:1 http://cn.mirrors.ustc.edu.cn/ubuntu bionic InRelease 连接失败 [IP: 218. ...

  9. python json格式化打印

    编写python脚本,调试的时候需要打印json格式报文,直接打印看不出层次,可以使用json.dumps格式化打印 import json import requests def test_json ...

  10. Java对象构造

    关于对象构造的一些认识. 默认域初始化 如果在构造器中没有显示地给域赋予初值,那么就会被自动地赋予默认值:数值为0,布尔值为false,对象引用为null.然而,这显然是不安全的,在一个null引用上 ...