GridSearchCV(estimatorparam_gridscoring=Nonefit_params=Nonen_jobs=1iid=Truerefit=Truecv=Noneverbose=0pre_dispatch='2*n_jobs'error_score='raise'return_train_score=True)

Parameters:

  estimator:所使用的分类器,或者pipeline

  param_grid:值为字典或者列表,即需要最优化的参数的取值

  scoring:准确度评价标准,默认None,这时需要使用score函数;或者如scoring='roc_auc',根据所选模型不同,评价准则不同。字符串(函数名),或是可调用对象,需要其函数签名形如:scorer(estimator, X, y);如果是None,则使用estimator的误差估计函数。

  n_jobs:并行数,int:个数,-1:跟CPU核数一致, 1:默认值。

  pre_dispatch:指定总共分发的并行任务数。当n_jobs大于1时,数据将在每个运行点进行复制,这可能导致OOM,而设置pre_dispatch参数,则可以预先划分总共的job数量,使数据最多被复制pre_dispatch次

  iid:默认True,为True时,默认为各个样本fold概率分布一致,误差估计为所有样本之和,而非各个fold的平均。

  cv:交叉验证参数,默认None,使用三折交叉验证。指定fold数量,默认为3,也可以是yield训练/测试数据的生成器。

  refit:默认为True,程序将会以交叉验证训练集得到的最佳参数,重新对所有可用的训练集与开发集进行,作为最终用于性能评估的最佳模型参数。即在搜索参数结束后,用最佳参数结果再次fit一遍全部数据集。

  verbose:日志冗长度,int:冗长度,0:不输出训练过程,1:偶尔输出,>1:对每个子模型都输出。

Attributes:
  best_estimator_:效果最好的分类器

  best_score_:成员提供优化过程期间观察到的最好的评分

  best_params_:描述了已取得最佳结果的参数的组合

  best_index_:对应于最佳候选参数设置的索引(cv_results_数组的索引)。

Methods:

  decision_function:使用找到的参数最好的分类器调用decision_function。

  fit(Xy=Nonegroups=None**fit_params):训练

  get_params(deep=True):获取这个估计器的参数。

  predict(X):用找到的最佳参数调用预估器。(直接预测每个样本属于哪一个类别)

  predict_log_proda(X):用找到的最佳参数调用预估器。(得到每个测试集样本在每一个类别的得分取log情况)

  predict_proba(X):用找到的最佳参数调用预估器。(得到每个测试集样本在每一个类别的得分情况)

  score(Xy=None):返回给定数据上的得分,如果预估器已经选出最优的分类器。

  transform(X):调用最优分类器进行对X的转换。

 

再写写最近的感受吧:最近一直在忙着秋招,情绪不是很高涨,(自己是数学专业的,自学的Python以及计算机的其他知识,不想当老师,也因为各种原因不想考研)因为没有看到希望,整天都在看书,刷题,希望能够得到某一位公司的垂青!!!一会要去参加一场宣讲会,希望会有好的收获吧!!!希望未来可期,虽然我不是学计算机的,但是我有学习能力,我肯努力呀!希望有人能够看到我!!!

GridSearchCV 参数的更多相关文章

  1. 集成树模型使用自动搜索模块GridSearchCV,stacking

    一. GridSearchCV参数介绍 导入模块: from sklearn.model_selection import GridSearchCV GridSearchCV 称为网格搜索交叉验证调参 ...

  2. 【sklearn】网格搜索 from sklearn.model_selection import GridSearchCV

    GridSearchCV用于系统地遍历模型的多种参数组合,通过交叉验证确定最佳参数. 1.GridSearchCV参数    # 不常用的参数 pre_dispatch 没看懂 refit 默认为Tr ...

  3. scikit-learning教程(三)使用文本数据

    使用文本数据 本指南的目标是探讨scikit-learn 一个实际任务中的一些主要工具:分析二十个不同主题的文本文档(新闻组帖子)集合. 在本节中,我们将看到如何: 加载文件内容和类别 提取适用于机器 ...

  4. Python机器学习笔记 Grid SearchCV(网格搜索)

    在机器学习模型中,需要人工选择的参数称为超参数.比如随机森林中决策树的个数,人工神经网络模型中隐藏层层数和每层的节点个数,正则项中常数大小等等,他们都需要事先指定.超参数选择不恰当,就会出现欠拟合或者 ...

  5. 机器学习入门-随机森林预测温度-不同参数对结果的影响调参 1.RandomedSearchCV(随机参数组的选择) 2.GridSearchCV(网格参数搜索) 3.pprint(顺序打印) 4.rf.get_params(获得当前的输入参数)

    使用了RamdomedSearchCV迭代100次,从参数组里面选择出当前最佳的参数组合 在RamdomedSearchCV的基础上,使用GridSearchCV在上面最佳参数的周围选择一些合适的参数 ...

  6. 关于RandomizedSearchCV 和GridSearchCV(区别:参数个数的选择方式)

    # -*- coding: utf-8 -*- """ Created on Tue Aug 09 22:38:37 2016 @author: Administrato ...

  7. 机器学习笔记——模型调参利器 GridSearchCV(网格搜索)参数的说明

    GridSearchCV,它存在的意义就是自动调参,只要把参数输进去,就能给出最优化的结果和参数.但是这个方法适合于小数据集,一旦数据的量级上去了,很难得出结果.这个时候就是需要动脑筋了.数据量比较大 ...

  8. 吴裕雄 python 机器学习——模型选择参数优化暴力搜索寻优GridSearchCV模型

    import scipy from sklearn.datasets import load_digits from sklearn.metrics import classification_rep ...

  9. GridSearchCV网格搜索得到最佳超参数, 在K近邻算法中的应用

    最近在学习机器学习中的K近邻算法, KNeighborsClassifier 看似简单实则里面有很多的参数配置, 这些参数直接影响到预测的准确率. 很自然的问题就是如何找到最优参数配置? 这就需要用到 ...

随机推荐

  1. SpringBoot配置本地文件映射路径

    1.前言 在springboot的项目中,如果需要通过项目方式访问本地磁盘的文件,不仅可以使用nginx代理的方式,还可以使用springboot配置的方式进行访问. 实例原因说明:由于上传的图片是要 ...

  2. Python3+PYQT5 实现并打包exe小工具(2)

    前言:前篇已经通过python代码实现了逻辑,传送门:https://www.cnblogs.com/jc-home/p/14447850.html 现在后篇记录的是打包成exe的方式给项目其他同事使 ...

  3. .Net -- NLog日志框架配置与使用

    NLog是适用于各种.NET平台(包括.NET标准)的灵活,免费的日志记录平台,NLog可将日志写入多个目标,比如Database.File.Console.Mail.下面介绍下NLog的基本使用方法 ...

  4. 如何用css写一个带斜切角、有边框又有内外阴影的按钮呢?

    如果有一天,UI设计师丢过来一张UI稿,上面有这样一个带有斜切角.有边框还有内外阴影的按钮,你会怎么实现呢?第一反应切图?可是按钮内容.大小都是可变的,那得切多少图啊~Canvas?SVG?No,no ...

  5. Hive 填坑指南

    Hive 填坑指南 目录 Hive 填坑指南 数据表备份 数据表备份 方法1:create table 表名_new as select * from 原表 create table 表名_new a ...

  6. Git:使用远程仓库

    远程仓库可使用Github.Gitee,或自建Gitlab.Gogs服务器,这里使用Github. 配置本地用户名和邮箱 # 配置本地用户的用户名邮箱(保存在用户.gitconfig文件) $ git ...

  7. C# webapi跨域

    C# webapi跨域   第一种在Web.config中<system.webServer>节点中配置(不支持多个域名跨域) 1 <httpProtocol> 2 <c ...

  8. 14. vue源码入口+项目结构分析

    一. vue源码 我们安装好vue以后, 如何了解vue的的代码结构, 从哪里下手呢? 1.1. vue源码入口 vue的入口是package.json 来分别看看是什么含义 dependences: ...

  9. 漏洞复现-CVE-2018-8715-Appweb

          0x00 实验环境 攻击机:Win 10 0x01 影响版本 嵌入式HTTP Web服务器,<7.0.3版本 0x02 漏洞复现 (1)实验环境: 打开后出现此弹框登录界面: (2) ...

  10. Solon 框架详解(十一)- Solon Cloud 的配置说明

    Solon 详解系列文章: Solon 框架详解(一)- 快速入门 Solon 框架详解(二)- Solon的核心 Solon 框架详解(三)- Solon的web开发 Solon 框架详解(四)- ...