GridSearchCV(estimatorparam_gridscoring=Nonefit_params=Nonen_jobs=1iid=Truerefit=Truecv=Noneverbose=0pre_dispatch='2*n_jobs'error_score='raise'return_train_score=True)

Parameters:

  estimator:所使用的分类器,或者pipeline

  param_grid:值为字典或者列表,即需要最优化的参数的取值

  scoring:准确度评价标准,默认None,这时需要使用score函数;或者如scoring='roc_auc',根据所选模型不同,评价准则不同。字符串(函数名),或是可调用对象,需要其函数签名形如:scorer(estimator, X, y);如果是None,则使用estimator的误差估计函数。

  n_jobs:并行数,int:个数,-1:跟CPU核数一致, 1:默认值。

  pre_dispatch:指定总共分发的并行任务数。当n_jobs大于1时,数据将在每个运行点进行复制,这可能导致OOM,而设置pre_dispatch参数,则可以预先划分总共的job数量,使数据最多被复制pre_dispatch次

  iid:默认True,为True时,默认为各个样本fold概率分布一致,误差估计为所有样本之和,而非各个fold的平均。

  cv:交叉验证参数,默认None,使用三折交叉验证。指定fold数量,默认为3,也可以是yield训练/测试数据的生成器。

  refit:默认为True,程序将会以交叉验证训练集得到的最佳参数,重新对所有可用的训练集与开发集进行,作为最终用于性能评估的最佳模型参数。即在搜索参数结束后,用最佳参数结果再次fit一遍全部数据集。

  verbose:日志冗长度,int:冗长度,0:不输出训练过程,1:偶尔输出,>1:对每个子模型都输出。

Attributes:
  best_estimator_:效果最好的分类器

  best_score_:成员提供优化过程期间观察到的最好的评分

  best_params_:描述了已取得最佳结果的参数的组合

  best_index_:对应于最佳候选参数设置的索引(cv_results_数组的索引)。

Methods:

  decision_function:使用找到的参数最好的分类器调用decision_function。

  fit(Xy=Nonegroups=None**fit_params):训练

  get_params(deep=True):获取这个估计器的参数。

  predict(X):用找到的最佳参数调用预估器。(直接预测每个样本属于哪一个类别)

  predict_log_proda(X):用找到的最佳参数调用预估器。(得到每个测试集样本在每一个类别的得分取log情况)

  predict_proba(X):用找到的最佳参数调用预估器。(得到每个测试集样本在每一个类别的得分情况)

  score(Xy=None):返回给定数据上的得分,如果预估器已经选出最优的分类器。

  transform(X):调用最优分类器进行对X的转换。

 

再写写最近的感受吧:最近一直在忙着秋招,情绪不是很高涨,(自己是数学专业的,自学的Python以及计算机的其他知识,不想当老师,也因为各种原因不想考研)因为没有看到希望,整天都在看书,刷题,希望能够得到某一位公司的垂青!!!一会要去参加一场宣讲会,希望会有好的收获吧!!!希望未来可期,虽然我不是学计算机的,但是我有学习能力,我肯努力呀!希望有人能够看到我!!!

GridSearchCV 参数的更多相关文章

  1. 集成树模型使用自动搜索模块GridSearchCV,stacking

    一. GridSearchCV参数介绍 导入模块: from sklearn.model_selection import GridSearchCV GridSearchCV 称为网格搜索交叉验证调参 ...

  2. 【sklearn】网格搜索 from sklearn.model_selection import GridSearchCV

    GridSearchCV用于系统地遍历模型的多种参数组合,通过交叉验证确定最佳参数. 1.GridSearchCV参数    # 不常用的参数 pre_dispatch 没看懂 refit 默认为Tr ...

  3. scikit-learning教程(三)使用文本数据

    使用文本数据 本指南的目标是探讨scikit-learn 一个实际任务中的一些主要工具:分析二十个不同主题的文本文档(新闻组帖子)集合. 在本节中,我们将看到如何: 加载文件内容和类别 提取适用于机器 ...

  4. Python机器学习笔记 Grid SearchCV(网格搜索)

    在机器学习模型中,需要人工选择的参数称为超参数.比如随机森林中决策树的个数,人工神经网络模型中隐藏层层数和每层的节点个数,正则项中常数大小等等,他们都需要事先指定.超参数选择不恰当,就会出现欠拟合或者 ...

  5. 机器学习入门-随机森林预测温度-不同参数对结果的影响调参 1.RandomedSearchCV(随机参数组的选择) 2.GridSearchCV(网格参数搜索) 3.pprint(顺序打印) 4.rf.get_params(获得当前的输入参数)

    使用了RamdomedSearchCV迭代100次,从参数组里面选择出当前最佳的参数组合 在RamdomedSearchCV的基础上,使用GridSearchCV在上面最佳参数的周围选择一些合适的参数 ...

  6. 关于RandomizedSearchCV 和GridSearchCV(区别:参数个数的选择方式)

    # -*- coding: utf-8 -*- """ Created on Tue Aug 09 22:38:37 2016 @author: Administrato ...

  7. 机器学习笔记——模型调参利器 GridSearchCV(网格搜索)参数的说明

    GridSearchCV,它存在的意义就是自动调参,只要把参数输进去,就能给出最优化的结果和参数.但是这个方法适合于小数据集,一旦数据的量级上去了,很难得出结果.这个时候就是需要动脑筋了.数据量比较大 ...

  8. 吴裕雄 python 机器学习——模型选择参数优化暴力搜索寻优GridSearchCV模型

    import scipy from sklearn.datasets import load_digits from sklearn.metrics import classification_rep ...

  9. GridSearchCV网格搜索得到最佳超参数, 在K近邻算法中的应用

    最近在学习机器学习中的K近邻算法, KNeighborsClassifier 看似简单实则里面有很多的参数配置, 这些参数直接影响到预测的准确率. 很自然的问题就是如何找到最优参数配置? 这就需要用到 ...

随机推荐

  1. 将VMware虚拟机最小化到托盘栏

    版权:本文采用「署名-非商业性使用-相同方式共享 4.0 国际」知识共享许可协议进行许可.   目录 前言 将VMware最小化到托盘栏的方法 1.下载 Trayconizer 2.解压 trayco ...

  2. How DRI and DRM Work

    How DRI and DRM Work Introduction This page is intended as an introduction to what DRI and DRM are, ...

  3. Linux操作php.ini文件

    有时你使用的是别人搭建好的环境,不知道php.ini在哪里,或者好久没有修改配置了,已经忘记了路径在哪,所以在操作文件之前,得先要找到.ini路径. 找php.ini 方式一 $ php -i | g ...

  4. 25个关键技术点,带你熟悉Python

    摘要:本文收纳了Python学习者经常使用的库和包,并介绍了Python使用中热门的问题. 01.Python 简介 什么是 Python 一种面向对象的高级动态可解释型脚本语言. Python 解释 ...

  5. Python3读取网页HTML代码,并保存在本地文件中

    旧版Python中urllib模块内有一个urlopen方法可打开网页,但新版python中没有了,新版的urllib模块里面只有4个子模块(error,request,response,parse) ...

  6. WAV16T VPX国产化千兆交换板

      WAV16T是基于盛科CTC5160设计的国产化3U三层千兆VPX交换板,提供16路千兆电口,采用龙芯 2K1000处理器.支持常规的L2/L3协议,支持Telnet.SNMP.WEB,CLI等多 ...

  7. 模拟实现AMD模块化规范

    目录 引子 再谈什么是闭包(闭包的产生)? 词法作用域 回到闭包 利用闭包编写模块 实现AMD模块化规范 写在最后 引子 本文最后的目的是模拟实现AMD模块化规范,而写下本文的原因是今天阅读到了< ...

  8. IDApro 快捷键

    https://www.hex-rays.com/wp-content/static/products/ida/idapro_cheatsheet.html File Operations Parse ...

  9. 《C++反汇编与逆向分析技术揭秘》--认识启动函数,找到用户入口

    <C++反汇编与逆向分析>和<程序员的自我修养>都是以VC6的代码作为例子讲解的.这里是在vs2017下,CRT代码有些区别,但整体流程上都是初始化环境,设置参数,最后转到用户 ...

  10. Scientific Internet Access

    下载小飞机 https://github.com/shadowsocksr-backup 寻找ssr https://github.com/Alvin9999/new-pac/wiki/ss%E5%8 ...