洛谷题面传送门

怎么题解区全是 2log 的做法/jk,这里提供一种 1log 并且代码更短(bushi)的做法。

首先考虑对于一个序列 \(a\) 怎样计算将其变成单调不降的最小代价。对于这类涉及区间操作问题,果断往差分序列方向想,我们记 \(d_i=a_i-a_{i+1}\),那么我们肯定会想将所有 \(d\) 都变成非正的,而一次操作肯定会将某个 \(d_i\) 减 \(1\),并选择将某个 \(d_i\) 加 \(1\)(当然也可以不操作)。加一肯定是不优的,因此我们每次肯定会选择最右边的元素作为右端点避免加一操作。因此将序列 \(d\) 变成非正的代价就是 \(\sum\max(d_i,0)\)。

接下来就可以考虑 DP 了。我们设 \(dp_{i,j}\) 表示序列最后一个元素是 \(a_i\),当前 \(\sum\max(d_i,0)=j\) 最多保留了多少株玉米。那么有转移 \(dp_{i,j}=\max\limits_{l<i}dp_{l,j-\max(a_l-a_j,0)}+1\)。直接转移是 \(n^2k\) 的。不过注意到这题的值域很小,因此考虑将 \(\max\) 然后 BIT 处理偏序关系,具体来说,如果 \(a_l<a_j\),那么 \(dp_{l,j}+1\to dp_{i,j}\),我们就建立 \(k\) 个树状数组,第 \(j\) 个下标为 \(t\) 的位置维护 \(a_l=t\) 的 \(l\) 中 \(dp_{l,j}\) 的最大值,那么这一类转移就在第 \(j\) 个树状数组中取一遍前缀 \(\max\) 即可。如果 \(a_l\ge a_j\),那么 \(dp_{l,j-a_l+a_j}+1\to dp_{l,j}\)。不难发现这一类 DP 转移来的 \(dp_{l,t}\) 一定有 \(t+a_l=j+a_i\),于是我们建立 \(5500\) 个 BIT,第 \(i\) 个下标为 \(j\) 的位置维护 \(t+a_l=i,a_l=j\) 的 \(dp_{l,t}\) 的最大值,这样这一类 DP 转移即可写成后缀和的形式,也可 BIT 维护。

复杂度 \(nk\log n\)。

const int MAXN=10000;
const int MAXK=500;
const int MAXV=5000;
int n,k,a[MAXN+5];
struct fenwick{
int t[MAXV+5];
void add(int x,int v){for(int i=x;i<=MAXV;i+=(i&(-i))) chkmax(t[i],v);}
int query(int x){int ret=0;for(int i=x;i;i&=(i-1)) chkmax(ret,t[i]);return ret;}
} t1[MAXK+MAXV+5],t2[MAXV+5];
int main(){
scanf("%d%d",&n,&k);int res=0;
for(int i=1;i<=n;i++) scanf("%d",&a[i]);
for(int i=1;i<=n;i++){
for(int j=0;j<=k;j++){
int val=max(t1[j+a[i]].query(MAXV-a[i]+1),t2[j].query(a[i]))+1;
t1[j+a[i]].add(MAXV-a[i]+1,val);t2[j].add(a[i],val);chkmax(res,val);
}
} printf("%d\n",res);
return 0;
}

洛谷 P3287 - [SCOI2014]方伯伯的玉米田(BIT 优化 DP)的更多相关文章

  1. 洛谷P3287 [SCOI2014]方伯伯的玉米田(树状数组)

    传送门 首先要发现,每一次选择拔高的区间都必须包含最右边的端点 为什么呢?因为如果拔高了一段区间,那么这段区间对于它的左边是更优的,对它的右边会更劣,所以我们每一次选的区间都得包含最右边的端点 我们枚 ...

  2. 【题解】Luogu P3287 [SCOI2014]方伯伯的玉米田

    原题传送门 一眼就能看出来这是一道dp题 显而易见每次操作的右端点一定是n,每株玉米被拔高的次数随位置不下降 用f(i,j) 表示以第i 株玉米结尾它被拔高了j 次的最长序列长度. \(f(i,j)= ...

  3. P3287 [SCOI2014]方伯伯的玉米田

    首先可以证明,一定存在一种最优解,每次选择的区间结尾都是 \(n\).因为如果某一个区间结尾不是 \(n\),将其替换成 \(n\) 仍然保持单调不下降.接着都按这个策略拔高玉米. 令 \(f_{i, ...

  4. 洛谷P3286 [SCOI2014]方伯伯的商场之旅

    题目:洛谷P3286 [SCOI2014]方伯伯的商场之旅 思路 数位DP dalao说这是数位dp水题,果然是我太菜了... 自己是不可能想出来的.这道题在讲课时作为例题,大概听懂了思路,简单复述一 ...

  5. 洛谷P3285 [SCOI2014]方伯伯的OJ 动态开点平衡树

    洛谷P3285 [SCOI2014]方伯伯的OJ 动态开点平衡树 题目描述 方伯伯正在做他的 \(Oj\) .现在他在处理 \(Oj\) 上的用户排名问题. \(Oj\) 上注册了 \(n\) 个用户 ...

  6. bzoj 3594: [Scoi2014]方伯伯的玉米田 dp树状数组优化

    3594: [Scoi2014]方伯伯的玉米田 Time Limit: 60 Sec  Memory Limit: 128 MBSubmit: 314  Solved: 132[Submit][Sta ...

  7. bzoj 3594: [Scoi2014]方伯伯的玉米田

    3594: [Scoi2014]方伯伯的玉米田 Time Limit: 60 Sec  Memory Limit: 128 MB Submit: 1399  Solved: 627 [Submit][ ...

  8. 洛谷 P3285 [SCOI2014]方伯伯的OJ

    看到这题,第一眼:平衡树水题,随便做一做好了 然后....我在花了n个小时去调试(维护平衡树父节点)之后,... 调了三个小时后,第一次失败的代码(只能查找排名为k的用户编号,不能根据编号查排名) # ...

  9. 洛谷 P3285 - [SCOI2014]方伯伯的OJ(平衡树)

    洛谷题面传送门 在酒店写的,刚了一整晚终于调出来了-- 首先考虑当 \(n\) 比较小(\(10^5\) 级别)的时候怎么解决,我们考虑将所有用户按排名为关键字建立二叉排序树,我们同时再用一个 map ...

随机推荐

  1. Mybatis 一级缓存 (20)

    Mybatis中的一级缓存和二级缓存(本博文只是针对一级缓存说明) 概述 ORM框架一般都会有缓存机制,做为其中一员的Mybatis也存在缓存.功能是用以提升查询的效率和服务给数据库带来压力.同样的M ...

  2. 网络通信IO的演变过程(一)(一个门外汉的理解)

    以前从来不懂IO的底层,只知道一个大概,就是输入输出的管道怼到一起,然后就可以传输数据了. 最近看了周志垒老师的公开课后,醍醐灌顶. 所以做一个简单的记录. 0 计算机组成原理相关 0.1. 计算机的 ...

  3. elasticsearch使用ik中文分词器

    elasticsearch使用ik中文分词器 一.背景 二.安装 ik 分词器 1.从 github 上找到和本次 es 版本匹配上的 分词器 2.使用 es 自带的插件管理 elasticsearc ...

  4. Linux C语言多线程编程实例解析

    Linux系统下的多线程遵循POSIX线程接口,称为 pthread.编写Linux下的多线程程序,需要使用头文件pthread.h,连接时需要使用库libpthread.a.顺便说一下,Linux ...

  5. 集合栈 牛客网 程序员面试金典 C++ Python

    集合栈 牛客网 程序员面试金典 C++ Python 题目描述 请实现一种数据结构SetOfStacks,由多个栈组成,其中每个栈的大小为size,当前一个栈填满时,新建一个栈.该数据结构应支持与普通 ...

  6. hdu 4521 小明序列(线段树,DP思想)

    题意: ①首先定义S为一个有序序列,S={ A1 , A2 , A3 , ... , An },n为元素个数 : ②然后定义Sub为S中取出的一个子序列,Sub={ Ai1 , Ai2 , Ai3 , ...

  7. Python技法4:闭包

    闭包:用函数代替类 有时我们会定义只有一个方法(除了__init__()之外)的类,而这种类可以通过使用闭包(closure)来替代.闭包是被外层函数包围的内层函数,它能够获取外层函数范围中的变量(即 ...

  8. 关于dns服务工作的原理,和配置的细节理解。

    dns服务器相关 1,dns原理,也就是迭代,和递归查询.将域名解析为ip的过程. 一次完整的查询请求经过的流程: Client -->hosts文件 -->DNS Service Loc ...

  9. Linux 兴趣小组2016免试题 第四关揭秘

    Linux 兴趣小组2016免试题 点这里 首先贴出第四关链接Linux 兴趣小组2016免试题 第四关 第四关: 进入网址我们看到的是4张扑克牌K,这是什么意思? 要我斗地主?好了,还是乖乖的先查看 ...

  10. Linux Mem (目录)

    1.用户态相关: 1.1.用户态进程空间的创建 - execve() 详解 1.2.用户态进程空间的映射 - mmap()详解 1.3.分页寻址(Paging/MMU)机制详解 2.内核态相关: 2. ...