洛谷 P3287 - [SCOI2014]方伯伯的玉米田(BIT 优化 DP)
怎么题解区全是 2log 的做法/jk,这里提供一种 1log 并且代码更短(bushi)的做法。
首先考虑对于一个序列 \(a\) 怎样计算将其变成单调不降的最小代价。对于这类涉及区间操作问题,果断往差分序列方向想,我们记 \(d_i=a_i-a_{i+1}\),那么我们肯定会想将所有 \(d\) 都变成非正的,而一次操作肯定会将某个 \(d_i\) 减 \(1\),并选择将某个 \(d_i\) 加 \(1\)(当然也可以不操作)。加一肯定是不优的,因此我们每次肯定会选择最右边的元素作为右端点避免加一操作。因此将序列 \(d\) 变成非正的代价就是 \(\sum\max(d_i,0)\)。
接下来就可以考虑 DP 了。我们设 \(dp_{i,j}\) 表示序列最后一个元素是 \(a_i\),当前 \(\sum\max(d_i,0)=j\) 最多保留了多少株玉米。那么有转移 \(dp_{i,j}=\max\limits_{l<i}dp_{l,j-\max(a_l-a_j,0)}+1\)。直接转移是 \(n^2k\) 的。不过注意到这题的值域很小,因此考虑将 \(\max\) 然后 BIT 处理偏序关系,具体来说,如果 \(a_l<a_j\),那么 \(dp_{l,j}+1\to dp_{i,j}\),我们就建立 \(k\) 个树状数组,第 \(j\) 个下标为 \(t\) 的位置维护 \(a_l=t\) 的 \(l\) 中 \(dp_{l,j}\) 的最大值,那么这一类转移就在第 \(j\) 个树状数组中取一遍前缀 \(\max\) 即可。如果 \(a_l\ge a_j\),那么 \(dp_{l,j-a_l+a_j}+1\to dp_{l,j}\)。不难发现这一类 DP 转移来的 \(dp_{l,t}\) 一定有 \(t+a_l=j+a_i\),于是我们建立 \(5500\) 个 BIT,第 \(i\) 个下标为 \(j\) 的位置维护 \(t+a_l=i,a_l=j\) 的 \(dp_{l,t}\) 的最大值,这样这一类 DP 转移即可写成后缀和的形式,也可 BIT 维护。
复杂度 \(nk\log n\)。
const int MAXN=10000;
const int MAXK=500;
const int MAXV=5000;
int n,k,a[MAXN+5];
struct fenwick{
int t[MAXV+5];
void add(int x,int v){for(int i=x;i<=MAXV;i+=(i&(-i))) chkmax(t[i],v);}
int query(int x){int ret=0;for(int i=x;i;i&=(i-1)) chkmax(ret,t[i]);return ret;}
} t1[MAXK+MAXV+5],t2[MAXV+5];
int main(){
scanf("%d%d",&n,&k);int res=0;
for(int i=1;i<=n;i++) scanf("%d",&a[i]);
for(int i=1;i<=n;i++){
for(int j=0;j<=k;j++){
int val=max(t1[j+a[i]].query(MAXV-a[i]+1),t2[j].query(a[i]))+1;
t1[j+a[i]].add(MAXV-a[i]+1,val);t2[j].add(a[i],val);chkmax(res,val);
}
} printf("%d\n",res);
return 0;
}
洛谷 P3287 - [SCOI2014]方伯伯的玉米田(BIT 优化 DP)的更多相关文章
- 洛谷P3287 [SCOI2014]方伯伯的玉米田(树状数组)
传送门 首先要发现,每一次选择拔高的区间都必须包含最右边的端点 为什么呢?因为如果拔高了一段区间,那么这段区间对于它的左边是更优的,对它的右边会更劣,所以我们每一次选的区间都得包含最右边的端点 我们枚 ...
- 【题解】Luogu P3287 [SCOI2014]方伯伯的玉米田
原题传送门 一眼就能看出来这是一道dp题 显而易见每次操作的右端点一定是n,每株玉米被拔高的次数随位置不下降 用f(i,j) 表示以第i 株玉米结尾它被拔高了j 次的最长序列长度. \(f(i,j)= ...
- P3287 [SCOI2014]方伯伯的玉米田
首先可以证明,一定存在一种最优解,每次选择的区间结尾都是 \(n\).因为如果某一个区间结尾不是 \(n\),将其替换成 \(n\) 仍然保持单调不下降.接着都按这个策略拔高玉米. 令 \(f_{i, ...
- 洛谷P3286 [SCOI2014]方伯伯的商场之旅
题目:洛谷P3286 [SCOI2014]方伯伯的商场之旅 思路 数位DP dalao说这是数位dp水题,果然是我太菜了... 自己是不可能想出来的.这道题在讲课时作为例题,大概听懂了思路,简单复述一 ...
- 洛谷P3285 [SCOI2014]方伯伯的OJ 动态开点平衡树
洛谷P3285 [SCOI2014]方伯伯的OJ 动态开点平衡树 题目描述 方伯伯正在做他的 \(Oj\) .现在他在处理 \(Oj\) 上的用户排名问题. \(Oj\) 上注册了 \(n\) 个用户 ...
- bzoj 3594: [Scoi2014]方伯伯的玉米田 dp树状数组优化
3594: [Scoi2014]方伯伯的玉米田 Time Limit: 60 Sec Memory Limit: 128 MBSubmit: 314 Solved: 132[Submit][Sta ...
- bzoj 3594: [Scoi2014]方伯伯的玉米田
3594: [Scoi2014]方伯伯的玉米田 Time Limit: 60 Sec Memory Limit: 128 MB Submit: 1399 Solved: 627 [Submit][ ...
- 洛谷 P3285 [SCOI2014]方伯伯的OJ
看到这题,第一眼:平衡树水题,随便做一做好了 然后....我在花了n个小时去调试(维护平衡树父节点)之后,... 调了三个小时后,第一次失败的代码(只能查找排名为k的用户编号,不能根据编号查排名) # ...
- 洛谷 P3285 - [SCOI2014]方伯伯的OJ(平衡树)
洛谷题面传送门 在酒店写的,刚了一整晚终于调出来了-- 首先考虑当 \(n\) 比较小(\(10^5\) 级别)的时候怎么解决,我们考虑将所有用户按排名为关键字建立二叉排序树,我们同时再用一个 map ...
随机推荐
- gin 源码阅读(5) - 灵活的返回值处理
gin 源码阅读系列文章列表: gin 源码阅读(1) - gin 与 net/http 的关系 gin 源码阅读(2) - http请求是如何流入gin的? gin 源码阅读(3) - gin 路由 ...
- Perl操作excel2007的模块
详细版:https://www.jianshu.com/p/84bda53827c8 第一种方法: 读写excel2007文档的perl模块: Spreadsheet::XLSX(读)和Spreads ...
- Windows系统安装Java步骤
今天学习到Burp Suite的使用,提示到安装Burp Suite需要安装Java环境. 于是乎,本弱鸡开启了漫长的Java环境安装之路~ 一.Java SE版本众多,在这里推荐下载Java1.8版 ...
- 【数据结构与算法Python版学习笔记】图——最短路径问题、最小生成树
最短路径问题 概念 可以通过"traceroute"命令来跟踪信息传送的路径: traceroute www.lib.pku.edu.cn 可以将互联网路由器体系表示为一个带权边的 ...
- pycharm中的terminal和Windows命令提示符有什么区别?二者用pip安装的包是不是位于相同位置?
那要看pycharm使用了什么shell,可以在设置->工具->终端里查看shell path.如果使用的是cmd.exe那就没区别.pycharm终端和Windows命令提示符用pip安 ...
- Noip模拟66 2021.10.2
T1 接力比赛 思路就是直接做背包$dp$,然后看看容量相同的相加的最大值. 考虑如何在$dp$过程中进行优化 注意到转移方程的第二维枚举容量没有必要从容量总和开始枚举 那么我们便转移边统计前缀和,从 ...
- [火星补锅] siano 神奇的线段树
前言: 本来以为很难打的,没想到主干一次就打对了,然而把输入的b和d弄混了,这sb错误调了两个小时... 解析: 神奇的线段树.注意到有一个性质,无论怎么割草,生长速度快的一定不会比生长速度慢的矮.因 ...
- WiFi天线对PCB布局布线和结构的要求详解 - 全文
随着市场竞争的加剧,硬件设备正以集成化的方向发展.天线也由外置进化内置再进化到嵌入式,我们先来介绍这类应用的天线种类: ⑴ On Board板载式:采用PCB蚀刻一体成型,性能受限,极低成本,应用于蓝 ...
- 广域网(ppp协议、HDLC协议)
文章转自:https://blog.csdn.net/weixin_43914604/article/details/105028759 学习课程:<2019王道考研计算机网络> 学习目的 ...
- fd定时器--timerfd学习
定时器 可以用系统定时器信号SIGALARM 最近工作需要于是又发现了一个新玩意timerfd配合epoll使用. man 手册看一下 TIMERFD_CREATE(2) Linux Programm ...