TVB斜率限制器

本文参考源程序来自Fluidity

简介

TVB斜率限制器最早由Cockburn和Shu(1989)提出,主要特点是提出了修正minmod函数

\[\tilde{m}(a_1, a_2, \cdots, a_n) = \left\{
\begin{array}{ll}
a_1 & \text{if} \, \left| a_1 \right| \le Mh^2, \cr
m\left(a_1, a_2, \cdots, a_n\right) & \text{otherwise}, \end{array}\right.\]

其中\(m\left(a_1, a_2, \cdots, a_n\right)\)为原始minmod函数,\(M\)为系数。

高维TVB限制器

针对高维情形可以参考Cockburn和Shu[2]的研究,高维情形与一维类似,但是主要区别在于构造修正minmod函数的两个参数

\[\begin{equation}
a_1 = \tilde{u}_h(m_i, K_0), \quad a_2 = v\Delta\bar{u}_h(m_i, K_0)
\end{equation}\]

其中 \(\tilde{u}_h(m_i, K_0)\) 为边界中点处近似解与单元均值之差 \(u_h(m_i, K_0) - \bar{u}_{K_0}\),\(\bar{u}_{K_0}\) 为单元 \(K_0\) 的单元均值。而这个 \(\Delta\bar{u}_h(m_i, K_0)\) 则是根据几何坐标插值后得到的边界中心值 \(u_h(m_1)\) 与 \(\bar{u}_{K_0}\) 之间差值,\(v\) 为大于1的系数,一般取1.5左右。

几何插值系数根据三个单元间坐标关系而定。如在计算边中点 \(m_1\) 的系数时,首先需确定除 \(b_0\) 和 \(b_1\) 外要取哪个单元进行插值(\(b_2\) 或 \(b_3\)),其中选取原则为以下两点

  1. 单元 \(b_1\) 所占比例尽量大
  2. 中点 \(m_1\) 尽量在两条射线 \(b_0 - b_1\) 与 \(b_0 - b_2\) 之间

在确定第三个单元之后,我们便可以确定中点 \(m_1\) 插值系数。插值公式为

\[\begin{equation}
u_h(m_1) - u_h(b_0) = \alpha_1 \left( u_h(b_1) - u_h(b_0) \right) + \alpha_2 \left( u_h(b_2) - u_h(b_0) \right)
\end{equation}\]

其中插值系数根据三个三角形单元形心坐标而定

\[\begin{equation}
\left\{ \begin{array}{ll}
x_{m_1} - x_{b_0} = \alpha_1 \left( x_{b_1} - x_{b_0} \right) + \alpha_2 \left( x_{b_2} - x_{b_0} \right) \cr
y_{m_1} - y_{b_0} = \alpha_1 \left( y_{b_1} - y_{b_0} \right) + \alpha_2 \left( y_{b_2} - y_{b_0} \right)
\end{array} \right.
\end{equation}\]

在得到修正后的边界值与均值之差后,修正过程并没有结束。因为可能TVB限制器只修正了三个边中某两个边中点值,而剩下的边中点值保持不变,若此时采用新的三个边中点值进行重构,得到的重构值均值区别于原始单元均值,造成单元不守恒。

为解决此问题,需要对修正后的插值进行修正。假设 \(\Delta_i\) 为限制器得到的解

\[\begin{equation}
\Delta_i = \tilde{m}\left(\tilde{u}_h(m_i, K_0), v\Delta\bar{u}_h(m_i, K_0)\right)
\end{equation}\]

由于 \(\Delta_i\) 代表限制后边界中点值与单元均值之差,因此应当满足 \(\sum_{i=1}^3 \Delta_i = 0\)。若 \(\sum_{i=1}^3 \Delta_i \neq 0\),计算修正系数 \(\theta^+\) 与 \(\theta^-\)

\[\begin{equation}
\begin{array}{ll}
pos = \sum_{i=1}^3 \text{max} \left(0, \Delta_i\right), \quad neg = \sum_{i=1}^3 \text{max} \left(0, -\Delta_i\right) \cr
\theta^+ = \text{min} \left(1, \frac{neg}{pos} \right), \quad \theta^- = \text{min} \left(1, \frac{pos}{neg} \right)
\end{array}
\end{equation}\]

其中 \(pos\) 与 \(neg\) 分别是 \(\Delta_i\) 中正系数与负系数总和。采用 \(\theta^+\) 与 \(\theta^-\) 修正后限制值为

\[\begin{equation}
\hat{\Delta}_i = \theta^+ \text{max} \left(0, \Delta_i\right) - \theta^- \text{max} \left(0, -\Delta_i\right)
\end{equation}\]

此时满足 \(\sum_{i=1}^3 \hat{\Delta}_i = 0\),根据 \(\hat{\Delta}_i\) 进行重构便可得到限制后的解。

代码

源程序文件为/assemble/Slope_limiters_DG.F90

subroutine cockburn_shu_setup_ele(ele, T, X)
integer, intent(in) :: ele
type(scalar_field), intent(inout) :: T
type(vector_field), intent(in) :: X integer, dimension(:), pointer :: neigh, x_neigh
real, dimension(X%dim) :: ele_centre, face_2_centre
real :: max_alpha, min_alpha, neg_alpha
integer :: ele_2, ni, nj, face, face_2, i, nk, ni_skip, info, nl
real, dimension(X%dim, ele_loc(X,ele)) :: X_val, X_val_2
real, dimension(X%dim, ele_face_count(T,ele)) :: neigh_centre,&
& face_centre
real, dimension(X%dim) :: alpha1, alpha2
real, dimension(X%dim,X%dim) :: alphamat
real, dimension(X%dim,X%dim+1) :: dx_f, dx_c
integer, dimension(mesh_dim(T)) :: face_nodes X_val=ele_val(X, ele) ele_centre=sum(X_val,2)/size(X_val,2) neigh=>ele_neigh(T, ele)
! x_neigh/=t_neigh only on periodic boundaries.
x_neigh=>ele_neigh(X, ele) searchloop: do ni=1,size(neigh) !----------------------------------------------------------------------
! Find the relevant faces.
!----------------------------------------------------------------------
ele_2=neigh(ni) ! Note that although face is calculated on field U, it is in fact
! applicable to any field which shares the same mesh topology.
face=ele_face(T, ele, ele_2)
face_nodes=face_local_nodes(T, face) face_centre(:,ni) = sum(X_val(:,face_nodes),2)/size(face_nodes) if (ele_2<=0) then
! External face.
neigh_centre(:,ni)=face_centre(:,ni)
cycle
end if X_val_2=ele_val(X, ele_2) neigh_centre(:,ni)=sum(X_val_2,2)/size(X_val_2,2)
if (ele_2/=x_neigh(ni)) then
! Periodic boundary case. We have to cook up the coordinate by
! adding vectors to the face from each side.
face_2=ele_face(T, ele_2, ele)
face_2_centre = &
sum(face_val(X,face_2),2)/size(face_val(X,face_2),2)
neigh_centre(:,ni)=face_centre(:,ni) + &
(neigh_centre(:,ni) - face_2_centre)
end if end do searchloop do ni = 1, size(neigh)
dx_c(:,ni)=neigh_centre(:,ni)-ele_centre !Vectors from ni centres to
! !ele centre
dx_f(:,ni)=face_centre(:,ni)-ele_centre !Vectors from ni face centres
!to ele centre
end do alpha_construction_loop: do ni = 1, size(neigh)
!Loop for constructing Delta v(m_i,K_0) as described in C&S
alphamat(:,1) = dx_c(:,ni) max_alpha = -1.0
ni_skip = 0 choosing_best_other_face_loop: do nj = 1, size(neigh)
!Loop over the other faces to choose best one to use
!for linear basis across face if(nj==ni) cycle !Construct a linear basis using all faces except for nj
nl = 1
do nk = 1, size(neigh)
if(nk==nj.or.nk==ni) cycle
nl = nl + 1
alphamat(:,nl) = dx_c(:,nk)
end do !Solve for basis coefficients alpha
alpha2 = dx_f(:,ni)
call solve(alphamat,alpha2,info) if((.not.any(alpha2<0.0)).and.alpha2(1)/norm2(alpha2)>max_alpha) &
& then
alpha1 = alpha2
ni_skip = nj
max_alpha = alpha2(1)/norm2(alpha2)
end if end do choosing_best_other_face_loop if(max_alpha<0.0) then
if(tolerate_negative_weights) then
min_alpha = huge(0.0)
ni_skip = 0
choosing_best_other_face_neg_weights_loop: do nj = 1, size(neigh)
!Loop over the other faces to choose best one to use
!for linear basis across face if(nj==ni) cycle !Construct a linear basis using all faces except for nj
nl = 1
do nk = 1, size(neigh)
if(nk==nj.or.nk==ni) cycle
nl = nl + 1
alphamat(:,nl) = dx_c(:,nk)
end do !Solve for basis coefficients alpha
alpha2 = dx_f(:,ni)
call solve(alphamat,alpha2,info) neg_alpha = 0.0
do i = 1, size(alpha2)
if(alpha2(i)<0.0) then
neg_alpha = neg_alpha + alpha2(i)**2
end if
end do
neg_alpha = sqrt(neg_alpha) if(min_alpha>neg_alpha) then
alpha1 = alpha2
ni_skip = nj
min_alpha = neg_alpha
end if
end do choosing_best_other_face_neg_weights_loop
else
FLAbort('solving for alpha failed')
end if
end if alpha(ele,ni,:) = 0.0
alpha(ele,ni,ni) = alpha1(1)
nl = 1
do nj = 1, size(neigh)
if(nj==ni.or.nj==ni_skip) cycle
nl = nl + 1
alpha(ele,ni,nj) = alpha1(nl)
end do dx2(ele,ni) = norm2(dx_c(:,ni)) end do alpha_construction_loop end subroutine cockburn_shu_setup_ele
subroutine limit_slope_ele_cockburn_shu(ele, T, X)
!!< Slope limiter according to Cockburn and Shu (2001)
!!< http://dx.doi.org/10.1023/A:1012873910884
integer, intent(in) :: ele
type(scalar_field), intent(inout) :: T
type(vector_field), intent(in) :: X integer, dimension(:), pointer :: neigh, x_neigh, T_ele
real :: ele_mean
real :: pos, neg
integer :: ele_2, ni, face
real, dimension(ele_loc(T,ele)) :: T_val, T_val_2
real, dimension(ele_face_count(T,ele)) :: neigh_mean, face_mean
real, dimension(mesh_dim(T)+1) :: delta_v
real, dimension(mesh_dim(T)+1) :: Delta, new_val
integer, dimension(mesh_dim(T)) :: face_nodes T_val=ele_val(T, ele) ele_mean=sum(T_val)/size(T_val) neigh=>ele_neigh(T, ele)
! x_neigh/=t_neigh only on periodic boundaries.
x_neigh=>ele_neigh(X, ele) searchloop: do ni=1,size(neigh) !----------------------------------------------------------------------
! Find the relevant faces.
!----------------------------------------------------------------------
ele_2=neigh(ni) ! Note that although face is calculated on field U, it is in fact
! applicable to any field which shares the same mesh topology.
face=ele_face(T, ele, ele_2)
face_nodes=face_local_nodes(T, face) face_mean(ni) = sum(T_val(face_nodes))/size(face_nodes) if (ele_2<=0) then
! External face.
neigh_mean(ni)=face_mean(ni)
cycle
end if T_val_2=ele_val(T, ele_2) neigh_mean(ni)=sum(T_val_2)/size(T_val_2) end do searchloop delta_v = matmul(alpha(ele,:,:),neigh_mean-ele_mean) delta_loop: do ni=1,size(neigh) Delta(ni)=TVB_minmod(face_mean(ni)-ele_mean, &
Limit_factor*delta_v(ni), dx2(ele,ni)) end do delta_loop if (abs(sum(Delta))>1000.0*epsilon(0.0)) then
! Coefficients do not sum to 0.0 pos=sum(max(0.0, Delta))
neg=sum(max(0.0, -Delta)) Delta = min(1.0,neg/pos)*max(0.0,Delta) &
-min(1.0,pos/neg)*max(0.0,-Delta) end if new_val=matmul(A,Delta+ele_mean) ! Success or non-boundary failure.
T_ele=>ele_nodes(T,ele) call set(T, T_ele, new_val) end subroutine limit_slope_ele_cockburn_shu

[1] COCKBURN B, SHU C-W. TVB Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws. II. General framework[J]. Mathematics of Computation, 1989, 52(186): 411–411.

[2] COCKBURN B, SHU C-W. The Runge-Kutta discontinuous Galerkin method for conservation laws. V. Multidimensional systems[J]. Journal of Computational Physics, 1998, 141(2): 199–224.

TVB斜率限制器的更多相关文章

  1. BJ2 斜率限制器

    BJ2 斜率限制器 本文介绍斜率限制器取自于 Anastasiou 与 Chan (1997)[1]研究,其所利用的斜率限制器也是 Barth 与 Jespersen 限制器的一种修正形式,并且包含一 ...

  2. 流量限制器(Flux Limiter)

    内容翻译自Wikipedia Flux limiter 流量限制器(Flux limiters)应用在高精度格式中-这种数值方法用来求解科学与工程问题,特别是由偏微分方程(PDE's)描述的流体动力学 ...

  3. 感谢 git

    今天对程序大修了一下,顺便把所有算例测试了一遍,突然发现二维浅水方程有些算例出现了明显的错误. 这次突然出现的错误让我有点措手不及,因为一直没有修改过浅水方程求解器,所以这些算例很久没有测试过了.硬着 ...

  4. Hermite WENO 重构格式

    Hermite WENO 单元重构 本文主要介绍采用 Hermite WENO 重构方法作为斜率限制器应用于二维或高维单元中. 1.简介[1] ENO格式最早由 Harten 等[2]提出,ENO格式 ...

  5. BZOJ 1597: [Usaco2008 Mar]土地购买 [斜率优化DP]

    1597: [Usaco2008 Mar]土地购买 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 4026  Solved: 1473[Submit] ...

  6. [斜率优化DP]【学习笔记】【更新中】

    参考资料: 1.元旦集训的课件已经很好了 http://files.cnblogs.com/files/candy99/dp.pdf 2.http://www.cnblogs.com/MashiroS ...

  7. BZOJ 1010: [HNOI2008]玩具装箱toy [DP 斜率优化]

    1010: [HNOI2008]玩具装箱toy Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 9812  Solved: 3978[Submit][St ...

  8. 单调队列 && 斜率优化dp 专题

    首先得讲一下单调队列,顾名思义,单调队列就是队列中的每个元素具有单调性,如果是单调递增队列,那么每个元素都是单调递增的,反正,亦然. 那么如何对单调队列进行操作呢? 是这样的:对于单调队列而言,队首和 ...

  9. 【BZOJ2442】 [Usaco2011 Open]修剪草坪 斜率优化DP

    第一次斜率优化. 大致有两种思路: 1.f[i]表示第i个不选的最优情况(最小损失和)f[i]=f[j]+e[i] 显然n^2会T,但是可以发现f的移动情况可以用之前单调队列优化,就优化成O(n)的了 ...

随机推荐

  1. F1英国大奖赛-银石赛道地图及弯道

    背景 今天晚上(2020-08-02)是今年英国大奖赛的正赛.刚好了解了一下赛道地图.记录一下,明年就不用到处找了. 简介 银石赛道(Silverstone Circuit)由一个废弃的空军基地改建, ...

  2. Coursera Deep Learning笔记 序列模型(二)NLP & Word Embeddings(自然语言处理与词嵌入)

    参考 1. Word Representation 之前介绍用词汇表表示单词,使用one-hot 向量表示词,缺点:它使每个词孤立起来,使得算法对相关词的泛化能力不强. 从上图可以看出相似的单词分布距 ...

  3. 上拉电阻大小对i2c总线的影响

    漏极开路上拉电阻取值为何不能很大或很小? 如果上拉电阻值过小,Vcc灌入端口的电流(Ic)将较大,这样会导致MOS管V2(三极管)不完全导通(Ib*β<Ic),有饱和状态变成放大状态,这样端口输 ...

  4. Spark面试题整理(三)

    1.为什么要进行序列化序列化? 可以减少数据的体积,减少存储空间,高效存储和传输数据,不好的是使用的时候要反序列化,非常消耗CPU. 2.Yarn中的container是由谁负责销毁的,在Hadoop ...

  5. NOIP模拟86(多校19)

    T1 特殊字符串 解题思路 \(f_{i,j}\) 表示前 \(i\) 个字符中结尾为 \(j\) 的最大贡献. 转移枚举当前位置于之前位置结尾的组合加上贡献即可. 对于边界问题,容易发现选择 1 一 ...

  6. 笔记本加装SSD并装系统

    1,首先了解笔记本配置信息 一般加装SSD都是120~256左右,并使用原有的机械硬盘:首先确定加装位置:1,是否支持M.2接口:假如支持,可以直接购买,拆机装上:我的笔记本不支持:所以考虑2,光驱的 ...

  7. 有关于ONVIF

    1.什么是ONVIF2008年5月,由安讯士(AXIS)联合博世(BOSCH)及索尼(SONY)公司三方宣布携手共同成立一个国际开放型网络视频产品标准网络接口开发论坛,取名为ONVIF(Open Ne ...

  8. mongodb入门命令-创建表数据(二)

    1.mongodb入门命令 1.1 show databases; 或 show dbs; //查看当前的数据库 > show dbs; admin 0.000GB config 0.000GB ...

  9. Sentinel-Go 源码系列(二)|初始化流程和责任链设计模式

    上节中我们知道了 Sentinel-Go 大概能做什么事情,最简单的例子如何跑起来 其实我早就写好了本系列的第二篇,但迟迟没有发布,感觉光初始化流程显得有些单一,于是又补充了责任链模式,二合一,内容显 ...

  10. Mybatis3源码加注释后后编译问题

    参考:https://mp.weixin.qq.com/s/v0ihaPsuyGufdc_ImEqX8A给mybatis3源码加注释并编译源代码 编译命令: mvn clean mvn install ...