1 #include<bits/stdc++.h>
2 using namespace std;
3 #define N 50001
4 int t,n,m,k,ans,mu[N],vis[N],p[N];
5 void mobius(){
6 mu[1]=1;
7 for(int i=2;i<N;i++){
8 if (!vis[i]){
9 p[++p[0]]=i;
10 mu[i]=-1;
11 }
12 for(int j=1;i*p[j]<N;j++){
13 vis[i*p[j]]=1;
14 if (i%p[j])mu[i*p[j]]=-mu[i];
15 else{
16 mu[i*p[j]]=0;
17 break;
18 }
19 }
20 }
21 for(int i=1;i<N;i++)mu[i]+=mu[i-1];
22 }
23 int main(){
24 scanf("%d",&t);
25 mobius();
26 while (t--){
27 scanf("%d%d%d",&n,&m,&k);
28 n/=k;
29 m/=k;
30 ans=0;
31 for(int i=1,j;i<=min(n,m);i=j+1){
32 j=min(n/(n/i),m/(m/i));
33 ans+=(mu[j]-mu[i-1])*(n/i)*(m/i);
34 }
35 printf("%d\n",ans);
36 }
37 }

[bzoj1101]Zap的更多相关文章

  1. Bzoj1101 Zap(莫比乌斯反演)

    题面 Bzoj 题解 先化式子 $$ \sum_{x=1}^a\sum_{y=1}^b\mathbf f[gcd(x,y)==d] \\ = \sum_{x=1}^a\sum_{y=1}^b\sum_ ...

  2. Bzoj 2190 仪仗队(莫比乌斯反演)

    题面 bzoj 洛谷 题解 看这个题先大力猜一波结论 #include <cstdio> #include <cstring> #include <algorithm&g ...

  3. [基本操作] Mobius 反演, Dirichlet 卷积和杜教筛

    Dirichlet 卷积是两个定义域在正整数上的函数的如下运算,符号为 $*$ $(f * g)(n) = \sum_{d|n}f(d)g(\frac{n}{d})$ 如果不强调 $n$ 可简写为 $ ...

  4. [BZOJ1101][POI2007]Zap

    [BZOJ1101][POI2007]Zap 试题描述 FGD正在破解一段密码,他需要回答很多类似的问题:对于给定的整数a,b和d,有多少正整数对x,y,满足x<=a,y<=b,并且gcd ...

  5. BZOJ1101 POI2007 Zap 【莫比乌斯反演】

    BZOJ1101 POI2007 Zap Description FGD正在破解一段密码,他需要回答很多类似的问题:对于给定的整数a,b和d,有多少正整数对x,y,满足x<=a,y<=b, ...

  6. BZOJ1101: [POI2007]Zap(莫比乌斯反演)

    1101: [POI2007]Zap Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 2951  Solved: 1293[Submit][Status ...

  7. 莫比乌斯反演学习笔记+[POI2007]Zap(洛谷P3455,BZOJ1101)

    先看一道例题:[POI2007]Zap BZOJ 洛谷 题目大意:$T$ 组数据,求 $\sum^n_{i=1}\sum^m_{j=1}[gcd(i,j)=k]$ $1\leq T\leq 50000 ...

  8. Bzoj1101: [POI2007]Zap 莫比乌斯反演+整除分块

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=1101 莫比乌斯反演 1101: [POI2007]Zap 设 \(f(i)\) 表示 \(( ...

  9. BZOJ1101 & 洛谷3455:[POI2007]ZAP——题解

    https://www.luogu.org/problemnew/show/3455#sub http://www.lydsy.com/JudgeOnline/problem.php?id=1101 ...

随机推荐

  1. 常用SQL函数大全

    数学函数 mod(x,y) 返回x/y的模(余数)mod(5,3)=2,mod(3,5)=3 floor(x)   返回小于x的最大整数值ceiling(3)=3,ceiling(3.1)=3 cei ...

  2. jquery-无缝滚动

    <!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8&quo ...

  3. 【UE4 C++】简单获取名称、状态、时间、帧数、路径与FPaths

    基于UKismetSystemLibrary 获取各类名称 // Returns the actual object name. UFUNCTION(BlueprintPure, Category = ...

  4. VS Code Remote SSH设置

    本文翻译自:5 Steps: Setup VS Code for Remote Development via SSH from Windows to Linux system 5个步骤:设置VS代码 ...

  5. 类图示例-订单系统 / Class Diagram - Order System

    类图示例-订单系统 / Class Diagram - Order System 什么是类图? 类图通过显示它的类和它们之间的关系来概述系统.类图是静态的 - 它们显示交互的内容,但不显示交互时会发生 ...

  6. BUAAOO第四单元总结

    ---恢复内容开始--- 一.本单元两次作业的架构设计 第十三次作业:本次作业我创建了四个类,除去官方提供的Main和MyUmlInteraction类之外,还有Uclass和Ulinterface分 ...

  7. MySQL 8.0安装 + 配置环境变量 + 连接 cmd

    MySQL 安装教程 搜索 MySQL,进入官网,找到 download 点击适用于 window community 版本,点击图中第二个 450.7 M 的安装包进行下载 这里有五个选项,选择第二 ...

  8. Python课程笔记(六)

    今天上课补上了上次未学完比较重点的鼠标和键盘事件,同时开始学习运用turtle进行绘图. 本次课程的代码: https://gitee.com/wang_ming_er/python_course_l ...

  9. 用C++实现的数独解题程序 SudokuSolver 2.6 的新功能及相关分析

    SudokuSolver 2.6 的新功能及相关分析 SudokuSolver 2.6 的命令清单如下: H:\Read\num\Release>sudoku.exe Order please: ...

  10. 链表中倒数第K个结点 牛客网 剑指Offer

    链表中倒数第K个结点 牛客网 剑指Offer 题目描述 输入一个链表,输出该链表中倒数第k个结点. # class ListNode: # def __init__(self, x): # self. ...