题目

算法

应该是一道很经典的数位dp题

我们设dp[i][j]是填到第i位此时第i位的数是j的方案数

然后进行转移(代码注释)

代码

#include<iostream>
#include<cstdio>
#include<cmath>
#define ll long long
using namespace std;
ll p,q,dp[15][15];
ll init(){//进行初始化
for(ll i = 0;i <= 9;i++) dp[1][i] = 1;//[0,9]显然都是windy数
for(ll i = 2;i <= 10;i++)
for(ll j = 0;j <= 9;j++)
for(ll k = 0;k <= 9;k++)
if(abs(j - k) >= 2) dp[i][j] += dp[i - 1][k];//先预处理好dp值
}
ll work(ll x){//统计答案
ll a[15],len = 0,ans = 0;
while(x){//将x分解
a[++len] = x % 10;
x /= 10;
}
for(ll i = 1;i <= len - 1;i++)//先统计位数不足x位数的数 那这些数明显都可以计算到方案中
for(ll j = 1;j <= 9;j++)
ans += dp[i][j];
for(ll i = 1;i < a[len];i++)//位数和x位数相同 但最高位比x最高位小 显然也可以
ans += dp[len][i];
for(ll i = len - 1;i >= 1;i--){//这里处理位数和x位数相同 最高位 = x最高位的情况
for(ll j = 0;j <= a[i] - 1;j++)
if(abs(j - a[i + 1])>= 2) ans += dp[i][j];
if(abs(a[i + 1] - a[i]) < 2) break;
}
return ans;
}
ll a,b;
int main(){
scanf("%lld%lld",&a,&b);
init();
cout<<work(b + 1) - work(a);//这里应用前缀和的思想 work计算[0,x)的方案数 那么用work(b + 1) - work(a) 就是[a,b]的方案数
}

[SCOI2009] windy 数 (数位dp)的更多相关文章

  1. bzoj 1026 [SCOI2009]windy数 数位dp

    1026: [SCOI2009]windy数 Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://www.lydsy.com/JudgeOnline ...

  2. luogu P2657 [SCOI2009]windy数 数位dp 记忆化搜索

    题目链接 luogu P2657 [SCOI2009]windy数 题解 我有了一种所有数位dp都能用记忆话搜索水的错觉 代码 #include<cstdio> #include<a ...

  3. BZOJ1026: [SCOI2009]windy数[数位DP]

    1026: [SCOI2009]windy数 Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 6346  Solved: 2831[Submit][Sta ...

  4. 洛谷P2657 [SCOI2009]windy数 [数位DP,记忆化搜索]

    题目传送门 windy数 题目描述 windy定义了一种windy数.不含前导零且相邻两个数字之差至少为2的正整数被称为windy数. windy想知道, 在A和B之间,包括A和B,总共有多少个win ...

  5. 【bzoj1026】[SCOI2009]windy数 数位dp

    题目描述 windy定义了一种windy数.不含前导零且相邻两个数字之差至少为2的正整数被称为windy数. windy想知道,在A和B之间,包括A和B,总共有多少个windy数? 输入 包含两个整数 ...

  6. [bzoj1026][SCOI2009]windy数——数位dp

    题目 求[a,b]中的windy数个数. windy数指的是任意相邻两个数位上的数至少相差2的数,比如135是,134不是. 题解 感觉这个题比刚才做的那个简单多了...这个才真的应该是数位dp入门题 ...

  7. P2657 [SCOI2009]windy数 数位dp

    数位dp之前完全没接触过,所以NOIP之前搞一下.数位dp就是一种dp,emm……用来求解区间[L,R]内满足某个性质的数的个数,且这个性质与数的大小无关. 在这道题中,dp[i][j]代表考虑了i位 ...

  8. bzoj 1026 [ SCOI2009 ] windy数 —— 数位DP

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=1026 蛮简单的数位DP,预处理 f[i][j] 表示 i 位数,以 j 开头的 windy ...

  9. bzoj 1026: [SCOI2009]windy数 & 数位DP算法笔记

    数位DP入门题之一 也是我所做的第一道数位DP题目 (其实很久以前就遇到过 感觉实现太难没写) 数位DP题目貌似多半是问从L到R内有多少个数满足某些限制条件 只要出题人不刻意去卡多一个$log$什么的 ...

  10. $SCOI2009\ windy$数 数位$dp$

    \(Sol\) 数位\(dp\)常规套路题. \(dp[i][j]\)表示从低位到高位填到第\(i\)位且第\(i\)位的数字为\(j\)的方案数.答案就是\(sol(r)-sol(l+1).\)这里 ...

随机推荐

  1. WinForm RichTextBox 常用操作

    1.设置不自动选择字词 RichTextBox在选择文字的时候,如果没有关闭自动选择字词功能,我们有时候选择的时候会自动将光标前后的字或者词连接在一起进行选择. RichTextBox有属性AutoW ...

  2. 【c++ Prime 学习笔记】第2章 变量和基本类型

    2.1 基本内置类型 基本数据类型包含了算术类型(arithmetic type)和空类型(void) 算数类型,包含了字符.整型数.布尔值和浮点数 空类型,不对应具体的值 2.1.1 算术类型 算术 ...

  3. cunda 常用命令,删除,创建,换源

    https://github.com/tensorflow/tensorflow/ conda create --name [虚拟环境名] python=3.7 创建一个环境 conda activa ...

  4. 合理占用服务器空闲GPU[狗头]

    合理占用服务器GPU资源[狗头] 场景:当你想进行模型训练时,发现GPU全被占用,怎么办? 解决方案1: 在终端输入如下命令:watch -n 设定刷新时间(s) nvidia-smi 然后记起来了回 ...

  5. 数字孪生 3D 科技馆的科学传播新模式

    前言 科技馆是一种参与型体验型的博物馆,以传播科学知识.培养公众的科学创新技术为宗旨,并以其生动的展现方式得到公众的广泛欢迎.一直以来,我国科技馆的发展受到各种因素的制约和影响,发展缓慢.如今在我国经 ...

  6. prometheus(6)之常用服务监控

    监控常用服务 1.tomcat 2.redis 3.mysql 4.nginx 5.mongodb prometheus监控tomcat tomcat_exporter地址 https://githu ...

  7. k8s入坑之路(11)kubernetes服务发现

    kubernetes访问场景 1.集群内部访问 2.集群内部访问外部 3.集群外部访问内部 1.集群内部访问 1.pod之间直接ip通讯(利用calico通过路由表经过三层将ip流量转发)由于容器之间 ...

  8. go输入Hello word

    package main import "fmt" func main() {     fmt.Println("hello word") } 输入hello ...

  9. git 回滚版本

    方法一.(回滚到原来的版本) 1.在gitlab上找到要恢复的版本号,如: bbdca96 2.在客户端执行如下命令(执行前,先将本地代码切换到对应分支): git reset --hard bbdc ...

  10. JDK 之 HttpClient(jdk11)

    HttpClient 简介 java.net.http.HttpClient 是 jdk11 中正式启用的一个 http 工具类(其实早在 jdk9 的时候就已经存在了,只是处于孵化期),官方寓意为想 ...