DP算法对于大部分题有着良好的能力,但有些题目我们要转换思维,不能直接的设具体的转态....

最近做了两道秒题,在这里分享一下:

https://ac.nowcoder.com/acm/contest/5555/A

这是第一题,看到这道题,首先是要对m质因数分解的,然后把质因子的指数提出来,使得每个质因子只剩下一个在根号里,说白了就是要化简了.要搞出来一个系数t.

之后我们考虑n个数组成t的方案数,算是一个经典的问题了,如果直接求解的话直接组合数隔板法就上了,可要求本质不同的解,考场我傻眼了...考虑dp,设f[i][j]表示用i个数拼成j的方案数...

转移很显然,可以枚举下当前的数填几,可这也是有重合的啊,会重复计数.0 2,和2 0 会被算两次....然后,我自闭了....

好吧,最后还是用dp搞得,考虑我们重复计数的原因,因为顺序问题,所以我们可以强制使得序列是从大到小的,也就是说我们每次加的值都单调不升。

那怎么搞这个东西呢,再存一下上一个的值吗?不!不!不用,我们思考当前的状态(i,j),意思是用前i个人拼成了j的方案数,考虑我们在此基础上如何增加,使得它一定是递增的.

如图:

也就是说我们想让1,2两种方案只在3方案中记录一次答案,这样就能做到不重不漏了.考虑3的方案数是如何构成的.这里莫名想到算法进阶上一道线性dp的题,不过问题不大...

用一些巧妙的思想,若刚来的数>=1,容易发现这样的方案数和所有的数减1的方案数是相等的.因为我们只需要将所有的数加一即可.但若来的数为0的话怎么办,容易发现直接用上一维转移即可.

这里跳过了1的问题,考虑若是1的话,所有的数切掉1后第i维就没数了,那方案数不应该与i-1有关系吗?考虑这个状态下也就是第i位为1的情况,由于我们j是正序枚举的,所以这种情况已经被i这一维统计过了.所以在>=1时直接累加上即可.

由于要求总的方案数,所以这一位加啥都行..两种情况累加就行.

//不等,不问,不犹豫,不回头.
#include<bits/stdc++.h>
#define _ 0
#define db double
#define RE register
#define ll long long
#define P 998244353
#define INF 1000000000
#define get(x) x=read()
#define PLI pair<ll,int>
#define PII pair<int,int>
#define max(a,b) (a>b?a:b)
#define min(a,b) (a<b?a:b)
#define pb(x) push_back(x)
#define ull unsigned long long
#define getc(c) scanf("%s",c+1)
#define put(x) printf("%d\n",x)
#define putl(x) printf("%lld\n",x)
#define rep(i,x,y) for(RE int i=x;i<=y;++i)
#define fep(i,x,y) for(RE int i=x;i>=y;--i)
#define go(x) for(int i=link[x],y=a[i].y;i;y=a[i=a[i].next].y)
using namespace std;
const int N=1010;
int p[N],c[N],n,m,num;
ll f[N][N]; inline int read()
{
int x=0,ff=1;
char ch=getchar();
while(!isdigit(ch)) {if(ch=='-') ff=-1;ch=getchar();}
while(isdigit(ch)) {x=(x<<1)+(x<<3)+(ch^48);ch=getchar();}
return x*ff;
} int main()
{
//freopen("1.in","r",stdin);
get(n);get(m);
int t=1;
rep(i,2,sqrt(m))
{
if(m%i==0)
{
p[++num]=i;
while(m%i==0) c[num]++,m/=i;
}
}
if(m>1) p[++num]=m,c[num]=1;
rep(i,1,num)
{
if(c[i]>=2)
{
while(c[i]>=2) t=t*p[i],c[i]-=2;
}
}
f[0][0]=1;
rep(i,1,n) rep(j,0,t)
{
if(j>=i) f[i][j]=f[i][j-i];
f[i][j]=(f[i][j]+f[i-1][j])%P;
}
putl(f[n][t]);
return (0^_^0);
}
//以吾之血,祭吾最后的亡魂

第二题就更稍微......算了,还是我太菜了....

https://ac.nowcoder.com/acm/contest/5208/A

翻译一下题意:这里有n个牛,每个牛有三个朋友,让你给所有的牛编号,每对朋友间会造成编号差的绝对值的代价,求最小的代价?

一看,n<=12,爆搜啊!但,!12好像是4e8左右,爆搜说:抱歉,这超出我能搜索的范围了....

小数据我第二反应是网络流,尝试把每个奶牛拆成n个点,代表同一个奶牛的不同编号,但怎么连边呢....嗯,大概想了会,不是太会...

尝试将爆搜优化下,看能否水过去,意外的发现搜索咋优化,还不就是全排列后统计答案吗?这咋优化....

好吧,小数据应该用状压DP.谁叫状压是爆搜的优化呢?

可,状压只能表示一个牛选没选或编没编号?不会记录他的编号是几啊?完了,我又自闭了....

感觉这道题类型有点像有一次模拟考的题,让一个树内的点相互配对.最后统计哪些点出来子树,而不搞出来具体的方案..

这个题怎么说呢,我们思考当我们一个点编过号后,假若他的朋友还没编号,那无论他的朋友是几都会累加下这个编号带来1的代价.所以我们其实不用确切的知道他朋友的编号是几.我们只用知道他朋友是否已经编过号了

编过号了,无需统计代价,没编号,加上1的代价!

考虑设f[j]表示当前的状态下的最小代价,枚举所有的状态,统计下所有编过号但朋友没编号的数量,然后枚举下最后编号的是几,转移一下即可.

这里为什么要统计所有编过号的但朋友没编号的点的数量呢?因为我们刚才说的是对于当前编号,如果朋友没编号的代价为1,可如果后面朋友还没编号的话,显然就对于当前编号又要累加下代价.所以要枚举所有的点.

//不等,不问,不犹豫,不回头.
#include<bits/stdc++.h>
#define _ 0
#define db double
#define RE register
#define ll long long
#define P 1000000007
#define INF 1000000000
#define get(x) x=read()
#define PLI pair<ll,int>
#define PII pair<int,int>
#define max(a,b) (a>b?a:b)
#define min(a,b) (a<b?a:b)
#define pb(x) push_back(x)
#define ull unsigned long long
#define getc(c) scanf("%s",c+1)
#define put(x) printf("%d\n",x)
#define putl(x) printf("%lld\n",x)
#define rep(i,x,y) for(RE int i=x;i<=y;++i)
#define fep(i,x,y) for(RE int i=x;i>=y;--i)
#define go(x) for(int i=link[x],y=a[i].y;i;y=a[i=a[i].next].y)
using namespace std;
const int N=1<<13;
int f[N],n,a[15][4]; inline int read()
{
int x=0,ff=1;
char ch=getchar();
while(!isdigit(ch)) {if(ch=='-') ff=-1;ch=getchar();}
while(isdigit(ch)) {x=(x<<1)+(x<<3)+(ch^48);ch=getchar();}
return x*ff;
} int main()
{
//freopen("1.in","r",stdin);
get(n);
rep(i,1,n) get(a[i][1]),get(a[i][2]),get(a[i][3]);
memset(f,0x3f,sizeof(f));
int M=(1<<n)-1;f[0]=0;
rep(i,1,M)//枚举所有的状态.
{
int k=0;
rep(j,0,n-1) if(i&1<<j)
rep(l,1,3) if(!(i&1<<(a[j+1][l]-1))) ++k;
rep(j,0,n-1) if(i&1<<j)//枚举最后编号的点.
f[i]=min(f[i],f[i&(~(1<<j))]+k);
}
put(f[M]);
return (0^_^0);
}
//以吾之血,祭吾最后的亡魂

DP秒思维的更多相关文章

  1. [NOIP2005] 过河【Dp,思维题,缩点】

    Online Judge:Luogu P1052 Label:Dp,思维题,缩点,数学 题目描述 在河上有一座独木桥,一只青蛙想沿着独木桥从河的一侧跳到另一侧.在桥上有一些石子,青蛙很讨厌踩在这些石子 ...

  2. 洛谷 P4749 - [CERC2017]Kitchen Knobs(差分转换+dp,思维题)

    题面传送门 一道挺有意思的思维题. 首先有一个 obvious 的结论,就是对于每个炉子,要么转到哪里都符合条件,要么存在唯一的最大值.对于转到哪儿都符合条件的炉子我们 duck 不必考虑它,故我们只 ...

  3. 2017广东工业大学程序设计竞赛初赛 题解&源码(A,水 B,数学 C,二分 D,枚举 E,dp F,思维题 G,字符串处理 H,枚举)

    Problem A: An easy problem Description Peter Manson owned a small house in an obscure street. It was ...

  4. [USACO12NOV]同时平衡线Concurrently Balanced Strings DP map 思维

    题面 [USACO12NOV]同时平衡线Concurrently Balanced Strings 题解 考虑DP. \(f[i]\)表示以\(i\)为左端点的合法区间个数.令\(pos[i]\)表示 ...

  5. Codeforces Round #277 (Div. 2) D. Valid Sets (DP DFS 思维)

    D. Valid Sets time limit per test 1 second memory limit per test 256 megabytes input standard input ...

  6. Atcoder Grand Contest 031B(DP,思维)

    #include<bits/stdc++.h>using namespace std;int a[200007];int b[200007];long long dp[200007];lo ...

  7. Educational Codeforces Round 61 (Rated for Div. 2)F(区间DP,思维,枚举)

    #include<bits/stdc++.h>typedef long long ll;const int inf=0x3f3f3f3f;using namespace std;char ...

  8. Codeforces Round #538 (Div. 2)D(区间DP,思维)

    #include<bits/stdc++.h>using namespace std;int a[5007];int dp[5007][5007];int main(){    int n ...

  9. Codeforces Global Round 1D(DP,思维)

    #include<bits/stdc++.h>using namespace std;int dp[1000007][7][7];int cnt[1000007];int main(){  ...

随机推荐

  1. HDU - 3790 最短路径问题 (dijkstra算法)

    HDU - 3790 最短路径问题 Description 给你n个点,m条无向边,每条边都有长度d和花费p,给你起点s终点t,要求输出起点到终点的最短距离及其花费,如果最短距离有多条路线,则输出花费 ...

  2. C++ 飞行游戏

    源代码: #include<bits/stdc++.h> #include<windows.h> #include<conio.h> using namespace ...

  3. 关于当前PHP脚本运行时系统信息相关函数

    我们的 PHP 在执行的时候,其实可以获取到非常多的当前系统相关的信息.就像很多开源的 CMS 一般会在安装的时候来检测一些环境信息一样,这些信息都是可以方便地动态获取的. 脚本文件运行时的系统用户相 ...

  4. TP5开启缓存

    https://www.kancloud.cn/manual/thinkphp5/215850 V5.0.6+版本开始,全局请求缓存支持设置排除规则,使用方法如下:config.php文件 'requ ...

  5. jquery-ui dialog, ajax FormData [snippet], $.ajax setRequestHeader

    html: <link rel="stylesheet" href="//code.jquery.com/ui/1.12.1/themes/base/jquery- ...

  6. HTML 网页开发、CSS 基础语法—— 一. HTML概述(了解网页)

    1. 网页的本质 ① HTML就是用来制作网页文件的. ② 浏览器查看的网页都是.html或.htm文件. ③ HTML叫做超文本标记语言(Hypertext Markup Language),用于搭 ...

  7. WPF进阶技巧和实战02-布局

    窗体 无边框 窗体无边框(最大化及标题位置)WindowStyle="None" 窗体透明 AllowsTransparency="True",必须设置窗体无边 ...

  8. 开源框架 - 新 代码生成器 WebFirst / .NET Core

    框架描述 WebFirst  是一新代的 代码生成器,用法简单,功能强大,支持多种数据库 ,具体功能如下: 一. 建库.CodeFirst方式在线建表,没用到CodeFirst的用户可以用工具轻松体验 ...

  9. 升级了 Windows 11 正式版,有坑吗?

    今天磊哥去公司上班,惊喜的发现 Windows 提示更新了,并且是 Windows 11 正式版,这太让人开心了,二话不说"先升为敬". ​ 下载更新 下载完咱就重启更新呗. Wi ...

  10. JVM学习笔记——类加载器与类加载过程

    类加载器与类加载过程 类加载器ClassLoader 类加载器 ClassLoader 用于把 class 文件装载进内存. 启动类加载器(Bootstrap ClassLoader): 这个类加载使 ...