NOIP 模拟 $29\; \rm 完全背包问题$
题解 \(by\;zj\varphi\)
一道 \(\rm dp\) 题。
现将所有种类从小到大排序,然后判断,若最小的已经大于了 \(\rm l\),那么直接就是一个裸的完全背包,因为选的总数量有限制。
设 \(\rm f_{i,j,k}\) 为选了前 \(\rm i\) 种物品,总数为 \(\rm j\),容量为 \(\rm k\),是否可行,转移很简单。
对于另一种情况,能构造出的最小差距就是 \(v_1\),那么只要记录一下模 \(\rm v_1\) 的值即可。
设 \(\rm f_{i,j}\) 为选了 \(\rm i\) 个有限制的物品,模数为 \(j\) 的状态下最小和为多少,则有转移方程:
f_{i,j}=\min(f_{i,j},f_{i-1,(j-v_i)mod\;v_1}+v_i)\;\; v_i\ge l
\]
发现这个转移会出现环,所以直接最短路。
#include<bits/stdc++.h>
#define ri register signed
#define p(i) ++i
namespace IO{
char buf[1<<21],*p1=buf,*p2=buf;
#define gc() p1==p2&&(p2=(p1=buf)+fread(buf,1,1<<21,stdin),p1==p2)?(-1):*p1++
struct nanfeng_stream{
template<typename T>inline nanfeng_stream &operator>>(T &x) {
ri f=0;x=0;register char ch=gc();
while(!isdigit(ch)) {f|=ch=='-';ch=gc();}
while(isdigit(ch)) {x=(x<<1)+(x<<3)+(ch^48);ch=gc();}
return x=f?-x:x,*this;
}
}cin;
}
using IO::cin;
namespace nanfeng{
#define node(nm,v,dis) (node){nm,v,dis}
#define FI FILE *IN
#define FO FILE *OUT
template<typename T>inline T cmax(T x,T y) {return x>y?x:y;}
template<typename T>inline T cmin(T x,T y) {return x>y?y:x;}
typedef long long ll;
static const int N=51,M=3e5+7,C=31,V=1e4+7;
int v[N],n,m,l,c;
bool vis[C][V];
ll dis[C][V];
struct node{int nm,v;ll dis;};
std::queue<node> que;
std::bitset<M> f[N][C];
inline void spfa() {
memset(dis,127,sizeof(dis));
dis[0][0]=0;
que.push(node(0,0,0));
while(!que.empty()) {
node nw=que.front();que.pop();
vis[nw.nm][nw.v]=0;
for (ri i(2);i<=n;p(i)) {
int tmp;
if (v[i]<l) {
if (dis[nw.nm][tmp=(nw.v+v[i])%v[1]]>nw.dis+v[i]) {
dis[nw.nm][tmp]=nw.dis+v[i];
if (!vis[nw.nm][tmp]) que.push(node(nw.nm,tmp,nw.dis+v[i])),vis[nw.nm][tmp]=1;
}
} else if (nw.nm<c) {
if (dis[nw.nm+1][tmp=(nw.v+v[i])%v[1]]>nw.dis+v[i]) {
dis[nw.nm+1][tmp]=nw.dis+v[i];
if (!vis[nw.nm+1][tmp]) que.push(node(nw.nm+1,tmp,nw.dis+v[i])),vis[nw.nm+1][tmp]=1;
}
}
}
}
}
inline int main() {
//FI=freopen("nanfeng.in","r",stdin);
//FO=freopen("nanfeng.out","w",stdout);
cin >> n >> m;
for (ri i(1);i<=n;p(i)) cin >> v[i];
cin >> l >> c;
std::sort(v+1,v+n+1);
if (v[1]>=l) {
f[0][0][0]=1;
for (ri i(1);i<=n;p(i)) {
for (ri j(0);j<=c;p(j)) {
f[i][j]=f[i-1][j];
if (j) f[i][j]|=f[i][j-1]<<v[i];
}
}
for (ri i(0);i<c;p(i)) f[n][c]|=f[n][i];
for (ri i(1);i<=m;p(i)) {
ll w;cin >> w;
if (w>=M) puts("No");
else printf("%s\n",f[n][c][w]?"Yes":"No");
}
} else if (v[1]<l) {
spfa();
for (ri i(0);i<c;p(i))
for (ri j(0);j<v[1];p(j)) dis[c][j]=cmin(dis[c][j],dis[i][j]);
for (ri i(1);i<=m;p(i)) {
ll w;cin >> w;
printf("%s\n",w>=dis[c][w%v[1]]?"Yes":"No");
}
}
return 0;
}
}
int main() {return nanfeng::main();}\
NOIP 模拟 $29\; \rm 完全背包问题$的更多相关文章
- NOIP 模拟 $29\; \rm 最近公共祖先$
题解 \(by\;zj\varphi\) 首先考虑,如果将一个点修改成了黑点,那么它能够造成多少贡献. 它先会对自己的子树中的答案造成 \(w_x\) 的贡献. 考虑祖先时,它会对不包括自己的子树造成 ...
- NOIP 模拟 $29\; \rm 最长不下降子序列$
题解 \(by\;zj\varphi\) 观察这个序列,发现模数很小,所以它的循环节很小. 那么可以直接在循环节上做最长上升子序列,但是循环节中的逆序对会对拼接后的答案造成影响. 没有必要找逆序对个数 ...
- noip模拟29[简单的板子题](虽然我不会)
\(noip模拟29\;solutions\) 这次考试给我最大的伤害,让我意识到了差距 这场考试可以说是非常的简单,就是简单到,看两眼,打个表就有结果了 但是呢?我考得非常的完蛋,只有30pts 据 ...
- NOIP模拟 1
NOIP模拟1,到现在时间已经比较长了.. 那天是6.14,今天7.18了 //然鹅我看着最前边缺失的模拟1,还是终于忍不住把它补上,为了保持顺序2345重新发布了一遍.. # 用 户 名 ...
- 2021.5.22 noip模拟1
这场考试考得很烂 连暴力都没打好 只拿了25分,,,,,,,,好好总结 T1序列 A. 序列 题目描述 HZ每周一都要举行升旗仪式,国旗班会站成一整列整齐的向前行进. 郭神作为摄像师想要选取其中一段照 ...
- NOIP 模拟 $22\; \rm f$
题解 \(by\;zj\varphi\) 对于一个数,如果它二进制下第 \(i\) 位为 \(1\),那么 \(\rm x\) 在这一位选 \(1\) 的贡献就是和它不同的最高为为 \(i\) 的数的 ...
- NOIP模拟3
期望得分:30+90+100=220 实际得分:30+0+10=40 T1智障错误:n*m是n行m列,硬是做成了m行n列 T2智障错误:读入三个数写了两个%d T3智障错误:数值相同不代表是同一个数 ...
- 7.22 NOIP模拟7
又是炸掉的一次考试 T1.方程的解 本次考试最容易骗分的一道题,但是由于T2花的时间太多,我竟然连a+b=c都没判..暴力掉了40分. 首先a+b=c,只有一组解. 然后是a=1,b=1,答案是c-1 ...
- NOIP模拟 29
T1第一眼觉得是网络流 看见4e6条边200次增广我犹豫了 O(n)都过不去的赶脚.. 可是除了网络流板子我还会什么呢 于是交了个智障的EK 还是用dijkstra跑的 居然有50分!$(RP--)$ ...
随机推荐
- Vue中watch与computed的区别
一. 计算属性(computed) 1.计算属性是为了模板中的表达式简洁,易维护,符合用于简单运算的设计初衷.对于运算过于复杂,冗长,且不好维护,因此我们对于复杂的运算应该 使用计算属性的方式去书写. ...
- 【多线程】C++ 互斥锁(mutex)的简单原理分析
多线程是多任务处理的一种特殊形式,多任务处理允许让电脑同时运行两个或两个以上的程序.一般情况下,分为两种类型的多任务处理:基于进程和基于线程. 1)基于进程的多任务处理是程序的并发执行. 2)基于线程 ...
- python all any函数(相反)
''' all() 函数用于判断给定的可迭代参数 iterable 中的所有元素是否都为 TRUE,如果是返回 True,否则返回 False. 元素除了是 0.空.FALSE 外都算 TRUE. 语 ...
- Spark的安装和使用
根据Spark2.1.0入门:Spark的安装和使用在虚拟机安装Spark,并进行测试 实验3 Spark读取文件系统的数据 将文件上传hdfs (1)在spark-shell中读取Linux系统本 ...
- 高校表白App-团队冲刺第八天
今天要做什么 尝试连接数据库(MySQL) 做了什么 连接成功 遇到的问题 Android连接数据库可以采用JDBC连接,因为在Android开发中,大多数连接到远程MySQL数据库的方法是加入特定的 ...
- Python_结合Re正则模块爬虫
##### 爬取古诗文import reimport requestsdef parse_page(url): headers = { 'User-Agent':'Mozilla/5.0 (Windo ...
- dos命令的学习
打开CMD的方式 开始+系统+命令提示符 Windows+R+输入CMD 在任意的文件夹下面,按住shift+点击鼠标右键,在此处打开命令行窗口 资源管理器的地址栏前面加上CMD路径 管理员方式运行: ...
- P6845 [CEOI2019] Dynamic Diameter
P6845 [CEOI2019] Dynamic Diameter 题意 一颗带权树,每次更改一条边的权,每次修改后求出最大直径.强制在线. 思路 \(O(n\log^2n)\) 的暴力做法. 根据经 ...
- 第二篇 -- Django写一个接口并用Jmeter进行测试
第一节学习了Jmeter的下载和安装,那么第二节就来看看具体怎么使用. 本篇介绍的是使用Jmeter进行http接口测试,那么接口程序使用Django开发的一个小接口. 一.Django编写接口 这一 ...
- 微信小程序创建第一个项目
一.打开微信开发者工具,扫码登录 二.点击右侧的加号,添加小程序 第三步:创建成功后,报错 VM82:1 cloud init error: Error: invalid scope 没有权限,请先开 ...