【Github搬砖】Python入门网络爬虫之精华版
Python学习网络爬虫主要分3个大的版块:抓取,分析,存储
另外,比较常用的爬虫框架Scrapy,这里最后也详细介绍一下。
首先列举一下本人总结的相关文章,这些覆盖了入门网络爬虫需要的基本概念和技巧:宁哥的小站-网络爬虫
当我们在浏览器中输入一个url后回车,后台会发生什么?比如说你输入http://www.lining0806.com/,你就会看到宁哥的小站首页。
简单来说这段过程发生了以下四个步骤:
- 查找域名对应的IP地址。
- 向IP对应的服务器发送请求。
- 服务器响应请求,发回网页内容。
- 浏览器解析网页内容。
网络爬虫要做的,简单来说,就是实现浏览器的功能。通过指定url,直接返回给用户所需要的数据,而不需要一步步人工去操纵浏览器获取。
抓取
这一步,你要明确要得到的内容是什么?是HTML源码,还是Json格式的字符串等。
1. 最基本的抓取
抓取大多数情况属于get请求,即直接从对方服务器上获取数据。
首先,Python中自带urllib及urllib2这两个模块,基本上能满足一般的页面抓取。另外,requests也是非常有用的包,与此类似的,还有httplib2等等。
Requests:
import requests
response = requests.get(url)
content = requests.get(url).content
print "response headers:", response.headers
print "content:", content
Urllib2:
import urllib2
response = urllib2.urlopen(url)
content = urllib2.urlopen(url).read()
print "response headers:", response.headers
print "content:", content
Httplib2:
import httplib2
http = httplib2.Http()
response_headers, content = http.request(url, 'GET')
print "response headers:", response_headers
print "content:", content
此外,对于带有查询字段的url,get请求一般会将来请求的数据附在url之后,以?分割url和传输数据,多个参数用&连接。
data = {'data1':'XXXXX', 'data2':'XXXXX'}
Requests:data为dict,json
import requests
response = requests.get(url=url, params=data)
Urllib2:data为string
import urllib, urllib2
data = urllib.urlencode(data)
full_url = url+'?'+data
response = urllib2.urlopen(full_url)
相关参考:网易新闻排行榜抓取回顾
2. 对于登陆情况的处理
2.1 使用表单登陆
这种情况属于post请求,即先向服务器发送表单数据,服务器再将返回的cookie存入本地。
data = {'data1':'XXXXX', 'data2':'XXXXX'}
Requests:data为dict,json
import requests
response = requests.post(url=url, data=data)
Urllib2:data为string
import urllib, urllib2
data = urllib.urlencode(data)
req = urllib2.Request(url=url, data=data)
response = urllib2.urlopen(req)
2.2 使用cookie登陆
使用cookie登陆,服务器会认为你是一个已登陆的用户,所以就会返回给你一个已登陆的内容。因此,需要验证码的情况可以使用带验证码登陆的cookie解决。
import requests
requests_session = requests.session()
response = requests_session.post(url=url_login, data=data)
若存在验证码,此时采用response = requests_session.post(url=url_login, data=data)是不行的,做法应该如下:
response_captcha = requests_session.get(url=url_login, cookies=cookies)
response1 = requests.get(url_login) # 未登陆
response2 = requests_session.get(url_login) # 已登陆,因为之前拿到了Response Cookie!
response3 = requests_session.get(url_results) # 已登陆,因为之前拿到了Response Cookie!
相关参考:网络爬虫-验证码登陆
3. 对于反爬虫机制的处理
3.1 使用代理
适用情况:限制IP地址情况,也可解决由于“频繁点击”而需要输入验证码登陆的情况。
这种情况最好的办法就是维护一个代理IP池,网上有很多免费的代理IP,良莠不齐,可以通过筛选找到能用的。对于“频繁点击”的情况,我们还可以通过限制爬虫访问网站的频率来避免被网站禁掉。
proxies = {'http':'http://XX.XX.XX.XX:XXXX'}
Requests:
import requests
response = requests.get(url=url, proxies=proxies)
Urllib2:
import urllib2
proxy_support = urllib2.ProxyHandler(proxies)
opener = urllib2.build_opener(proxy_support, urllib2.HTTPHandler)
urllib2.install_opener(opener) # 安装opener,此后调用urlopen()时都会使用安装过的opener对象
response = urllib2.urlopen(url)
3.2 时间设置
适用情况:限制频率情况。
Requests,Urllib2都可以使用time库的sleep()函数:
import time
time.sleep(1)
3.3 伪装成浏览器,或者反“反盗链”
有些网站会检查你是不是真的浏览器访问,还是机器自动访问的。这种情况,加上User-Agent,表明你是浏览器访问即可。有时还会检查是否带Referer信息还会检查你的Referer是否合法,一般再加上Referer。
headers = {'User-Agent':'XXXXX'} # 伪装成浏览器访问,适用于拒绝爬虫的网站
headers = {'Referer':'XXXXX'}
headers = {'User-Agent':'XXXXX', 'Referer':'XXXXX'}
Requests:
response = requests.get(url=url, headers=headers)
Urllib2:
import urllib, urllib2
req = urllib2.Request(url=url, headers=headers)
response = urllib2.urlopen(req)
4. 对于断线重连
不多说。
def multi_session(session, *arg):
retryTimes = 20
while retryTimes>0:
try:
return session.post(*arg)
except:
print '.',
retryTimes -= 1
或者
def multi_open(opener, *arg):
retryTimes = 20
while retryTimes>0:
try:
return opener.open(*arg)
except:
print '.',
retryTimes -= 1
这样我们就可以使用multi_session或multi_open对爬虫抓取的session或opener进行保持。
5. 多进程抓取
这里针对华尔街见闻进行并行抓取的实验对比:Python多进程抓取 与 Java单线程和多线程抓取
相关参考:关于Python和Java的多进程多线程计算方法对比
6. 对于Ajax请求的处理
对于“加载更多”情况,使用Ajax来传输很多数据。
它的工作原理是:从网页的url加载网页的源代码之后,会在浏览器里执行JavaScript程序。这些程序会加载更多的内容,“填充”到网页里。这就是为什么如果你直接去爬网页本身的url,你会找不到页面的实际内容。
这里,若使用Google Chrome分析”请求“对应的链接(方法:右键→审查元素→Network→清空,点击”加载更多“,出现对应的GET链接寻找Type为text/html的,点击,查看get参数或者复制Request URL),循环过程。
- 如果“请求”之前有页面,依据上一步的网址进行分析推导第1页。以此类推,抓取抓Ajax地址的数据。
- 对返回的json格式数据(str)进行正则匹配。json格式数据中,需从'\uxxxx'形式的unicode_escape编码转换成u'\uxxxx'的unicode编码。
7. 自动化测试工具Selenium
Selenium是一款自动化测试工具。它能实现操纵浏览器,包括字符填充、鼠标点击、获取元素、页面切换等一系列操作。总之,凡是浏览器能做的事,Selenium都能够做到。
这里列出在给定城市列表后,使用selenium来动态抓取去哪儿网的票价信息的代码。
参考项目:网络爬虫之Selenium使用代理登陆:爬取去哪儿网站
8. 验证码识别
对于网站有验证码的情况,我们有三种办法:
- 使用代理,更新IP。
- 使用cookie登陆。
- 验证码识别。
使用代理和使用cookie登陆之前已经讲过,下面讲一下验证码识别。
可以利用开源的Tesseract-OCR系统进行验证码图片的下载及识别,将识别的字符传到爬虫系统进行模拟登陆。当然也可以将验证码图片上传到打码平台上进行识别。如果不成功,可以再次更新验证码识别,直到成功为止。
参考项目:验证码识别项目第一版:Captcha1
爬取有两个需要注意的问题:
- 如何监控一系列网站的更新情况,也就是说,如何进行增量式爬取?
- 对于海量数据,如何实现分布式爬取?
分析
抓取之后就是对抓取的内容进行分析,你需要什么内容,就从中提炼出相关的内容来。
常见的分析工具有正则表达式,BeautifulSoup,lxml等等。
存储
分析出我们需要的内容之后,接下来就是存储了。
我们可以选择存入文本文件,也可以选择存入MySQL或MongoDB数据库等。
存储有两个需要注意的问题:
- 如何进行网页去重?
- 内容以什么形式存储?
Scrapy
Scrapy是一个基于Twisted的开源的Python爬虫框架,在工业中应用非常广泛。
相关内容可以参考基于Scrapy网络爬虫的搭建,同时给出这篇文章介绍的微信搜索爬取的项目代码,给大家作为学习参考。
参考项目:使用Scrapy或Requests递归抓取微信搜索结果
Robots协议
好的网络爬虫,首先需要遵守Robots协议。Robots协议(也称为爬虫协议、机器人协议等)的全称是“网络爬虫排除标准”(Robots Exclusion Protocol),网站通过Robots协议告诉搜索引擎哪些页面可以抓取,哪些页面不能抓取。
在网站根目录下放一个robots.txt文本文件(如 https://www.taobao.com/robots.txt ),里面可以指定不同的网络爬虫能访问的页面和禁止访问的页面,指定的页面由正则表达式表示。网络爬虫在采集这个网站之前,首先获取到这个robots.txt文本文件,然后解析到其中的规则,然后根据规则来采集网站的数据。
1. Robots协议规则
User-agent: 指定对哪些爬虫生效
Disallow: 指定不允许访问的网址
Allow: 指定允许访问的网址
注意: 一个英文要大写,冒号是英文状态下,冒号后面有一个空格,"/"代表整个网站
2. Robots协议举例
禁止所有机器人访问
User-agent: *
Disallow: /
允许所有机器人访问
User-agent: *
Disallow:
禁止特定机器人访问
User-agent: BadBot
Disallow: /
允许特定机器人访问
User-agent: GoodBot
Disallow:
禁止访问特定目录
User-agent: *
Disallow: /images/
仅允许访问特定目录
User-agent: *
Allow: /images/
Disallow: /
禁止访问特定文件
User-agent: *
Disallow: /*.html$
仅允许访问特定文件
User-agent: *
Allow: /*.html$
Disallow: /
【Github搬砖】Python入门网络爬虫之精华版的更多相关文章
- Python 入门网络爬虫之精华版
Python 入门网络爬虫之精华版 转载 宁哥的小站,总结的不错 Python学习网络爬虫主要分3个大的版块:抓取,分析,存储 另外,比较常用的爬虫框架Scrapy,这里最后也详细介绍一下. 首先列举 ...
- Python 爬虫入门(二)——爬取妹子图
Python 爬虫入门 听说你写代码没动力?本文就给你动力,爬取妹子图.如果这也没动力那就没救了. GitHub 地址: https://github.com/injetlee/Python/blob ...
- Python 爬虫入门(一)——爬取糗百
爬取糗百内容 GitHub 代码地址https://github.com/injetlee/Python/blob/master/qiubai_crawer.py 微信公众号:[智能制造专栏],欢迎关 ...
- Python 爬虫入门之爬取妹子图
Python 爬虫入门之爬取妹子图 来源:李英杰 链接: https://segmentfault.com/a/1190000015798452 听说你写代码没动力?本文就给你动力,爬取妹子图.如果 ...
- 比特币搬砖对冲策略Python源码
策略复制地址:https://www.fmz.com/strategy/21023 策略原理 比特币搬砖策略是入门程序化交易的基础策略.原理简单,是新手尝试程序化的好选择,在其黄金时期,比特币搬砖也带 ...
- 网络搬砖是件苦力活 CMS推荐GHOS博客程序
搬砖不是技术活,而是苦力(bi)活,富有技术含量的苦力活说不定就是一门可以持续的生意. 我们不生产内容,我们只是互联网的内容搬运工,这是大部分不具备原创能力个人站长的心声.虽然原创能力不够,但是服务目 ...
- Python学习网络爬虫--转
原文地址:https://github.com/lining0806/PythonSpiderNotes Python学习网络爬虫主要分3个大的版块:抓取,分析,存储 另外,比较常用的爬虫框架Scra ...
- 目标检测---搬砖一个ALPR自动车牌识别的环境
目标检测---搬砖一个ALPR自动车牌识别的环境 参考License Plate Detection and Recognition in Unconstrained Scenarios@https: ...
- Github上的python开源项目
Python开源项目,期待大家和我们一起共同维护 github排名榜单 https://github.com/trending github搜索榜单:https://github.com/search ...
随机推荐
- myeclipse js报错
Myeclipse 版本10.1 加载的js报错,解决方法: window -> preferences -> myeclipse -> validation,在右边下拉框找到 Ja ...
- 你只会用 map.put?试试 Java 8 compute ,操作 Map 更轻松!
今天栈长分享一个实用的 Java 8 开发技能,那就是 Map 接口中增加的 compute 方法,给 Map 集合计算更新用的. compute简介 如下所示,Java 8 在 Map 和 Conc ...
- python-实现顺序栈
7 class sqstack(object): 8 def __init__(self,maxsize): 9 self.maxsize = maxsize 10 self.stackElem = ...
- linux screen的用法
今天使用vps时,起了一个http服务,因为需要用nc接收流量,就要关闭http服务,再去用nc接收流量就接收不到,请教了师傅,这里需要用到screen创建一个会话,就能http服务跟nc同时进行. ...
- APK瘦身属性——android:extractNativeLibs
先描述一下结论: android:extractNativeLibs = true时,gradle打包时会对工程中的so库进行压缩,最终生成apk包的体积会减小. 但用户在手机端进行apk安装时,系统 ...
- 通过 ASM 库生成和修改 class 文件
在 JVM中 Class 文件分析 主要详细讲解了Class文件的格式,并且在上一篇文章中做了总结. 众所周知,JVM 在运行时, 加载并执行class文件, 这个class文件基本上都是由我们所写的 ...
- 使用C# (.NET Core) 实现模板方法模式 (Template Method Pattern)
本文的概念内容来自深入浅出设计模式一书. 项目需求 有一家咖啡店, 供应咖啡和茶, 它们的工序如下: 咖啡: 茶: 可以看到咖啡和茶的制作工序是差不多的, 都是有4步, 其中有两步它们两个是一样的, ...
- HarmonyOS三方件开发指南(15)-LoadingView功能介绍
目录: 1. LoadingView组件功能介绍2. Lottie使用方法3. Lottie开发实现4.<HarmonyOS三方件开发指南>系列文章合集 1. LoadingView组件功 ...
- mvel 配合正则表达式实现文本替换
mvel 依赖 <dependency> <groupId>org.mvel</groupId> <artifactId>mvel2</artif ...
- Web协议详解与抓包实战,高效解决网络难题
无论你是前后端工程师,还是运维测试,如果想面试更高的职位,或者要站在更高的角度去理解技术业务架构,并能在问题出现时快速.高效地解决问题,Web 协议一定是你绕不过去的一道坎. 旨在帮助你对各种常用 W ...