本文博客链接:http://blog.csdn.net/qq1084283172/article/details/53557894

周末有空就写下博客了,今天来扯一扯Android平台的脱壳工具DexExtractor。DexExtractor工具的使用比较简单,脱壳的原理也比较简单,工具的作者bunnyrene讲这个android脱壳工具只要是针对bangbang (Bangcle)和ijiami加固的脱壳工具,应该是这两类加固的免费版吧。之前在分析android病毒的时候使用过,但是有时候脱壳还是不成功,需要人工手工脱壳来完成或者说这个工具需要进一步完善一下,不管怎么说谢谢作者大牛。

i.DexExtractor脱壳工具的使用说明和讨论链接

看雪论坛:http://bbs.pediy.com/showthread.php?t=201799

github地址:https://github.com/bunnyblue/DexExtractor

ii.作者编译好的镜像文件system.img的下载地址

网盘地址:http://pan.baidu.com/s/1jG3WQMU

iii.DexExtractor脱壳工具的使用说明截图

iiii.通过阅读DexExtractor作者提供的使用说明,写下需要注意的地方:

1.DexExtractor脱壳工具的原理是修改了android源码的DexFile.cpp的dexFileParse函数也就是原来的脱壳点函数处进行dexdump的处理,作者提供了Android
4.4---api 19版本系统
脱壳的system.img文件(推荐android模拟器用)和libdvm.so文件(android模拟器和android真机都可以使用)。

2.由于DexExtractor工具需要不断的向sdcard写文件,因此特别是android模拟器使用该脱壳工具一定设置Android模拟的sdcard的空间大小。

3.由于DexExtractor工具需要不断的向sdcard写文件,因此被脱壳的apk需要有向sdcard写文件的权限<uses-permission
android:name="android.permission.WRITE_EXTERNAL_STORAGE"/>。

4.DexExtractor工具的system.img文件(Android
4.4.2版本)使用比较简单--直接替换Android 4.4.2版本系统的system.img文件文件即可,Android模拟器的system.img文件的替换比较简单,Android真机的替换可能需要是Android真机进入recovery模式进行替换;DexExtractor工具的libdvm.so文件使用--需要使用abd的push命令将libdvm.so推送到android系统中然后在su权限将libdvm.so文件拷贝或者备份到Android系统的/system/lib/libdvm.so或者Android真机在root的情况下,使用rootexplore.apk(RE管理器工具)将libdvm.so文件拷贝到手机系统的/system/lib/libdvm.so下,替换掉原来Android系统的的/system/lib/libdvm.so文件,并赋予刚才拷贝替换的/system/lib/libdvm.so文件以0775权限然后重启Android真机即可。

adb push xxx/libdvm.so /data/local/tmp/libdvm.so
adb shell
su
mount -r -w -o remount/system
mount -o remount,rw /system
dd if=/system/lib/libdvm.so of=/data/local/tmp/libdvm.bak
rm /system/lib/libdvm.so
cat /data/local/tmp/libdvm.so >/system/lib/libdvm.so
chmod 0775 /system/lib/libdvm.so
mount -o remount,ro /system
exit
exit
adb reboot

iiiii.使用DexExtractor工具的system.img文件配置Android 4.4.2的android模拟器进行脱壳实验

使用前提条件

1.如果是android模拟器使用脱壳镜像文件system.img,一定要配置sdcard参数

2.需要脱壳的apk如果没有写权限,需要添加上写sdcard的权限。

如:
apk没有写权限的反编译了加上write权限

说明:

<!--往sdcard写入数据权限 -->

<uses-permission android:name="android.permission.WRITE_EXTERNAL_STORAGE"/>

<!--sdcard创建/删除文件权限 -->

<uses-permission android:name="android.permission.MOUNT_UNMOUNT_FILESYSTEMS"/>

需要使用的权限:

<uses-permission android:name="android.permission.WRITE_EXTERNAL_STORAGE"/>

#如果脱壳apk没有文件的写权限,反编译以后加上sdcard文件的写权限,然后重新打包apk程序。

DexExtractor脱壳实例(使用Android模拟器):

1.找到Android 4.4.2对应的API 19的系统文件的目录,如下:

E:\BaiduYunDownload\adt-bundle-windows-x86_64-20140702\sdk\system-images\android-19\default\armeabi-v7a
备份原来的system.img文件,然后将修改的system.img文件解压后拷贝到这个目录里。

2.在android模拟器上创建API为19的android模拟器,千万不能忘了为模拟器添加sdcard的内存空间参数。

3.用反编译工具查看被脱壳的apk是否有-----写文件的权限<uses-permission android:name="android.permission.WRITE_EXTERNAL_STORAGE"/>没有就添加上写文件的权限并重新打包apk程序。

4.adb install xxx.apk 安装需要脱壳的apk程序到上面创建的android模拟器上。

5.打开logcat的logcat 监视log  "被加固的包名" 和 "dvmtag" ,当看到 "create file end",说明脱壳成功;从eclipse中导出log日志文件并保存。(这里请参考作者提供的脱壳成功的说明)



6.adb pull  /sdcard/classes_xxx.dex 从android模拟器的sdcard中导出脱壳后但是经过base64加密的dex文件。

示例:

adb  pull  /sdcard/tx.qq898507339.bzy9_classes_5528.dex

7.脱壳后的dex文件被Base64编码了,需要解码。 

解码dex文件:

java -jar Decoder.jar  dex目录  

java -jar Decoder.jar   xxxx\tx.qq898507339.bzy9_classes_5528.dex

======================================================================================================
java环境的正确配置

安装JDK,比如目录在C:\Java

为了方便java程序的开发,需要配置一下环境变量,右击我的电脑->属性->高级->环境变量->用户变量中单击[新建(N)]添加以下环境变量

(假定你的JDK安装路径为C:\Java\jdk1.6.0_30)

JAVA_HOME

C:\Java\jdk1.6.0_30

PATH

C:\Java\jdk1.6.0_30\bin

CLASSPATH

.;%JAVA_HOME%\lib\dt.jar;%JAVA_HOME%\lib\tools.jar;(注前面的点号和分号一定不能丢,还有中间的,后面的分号也不要丢了)

说明:CLASSPATH可以再增加一些第三方的jar文件,方便手工编译和运行程序。

======================================================================================================

iiiiii.DexExtractor脱壳工具的代码分析:

DexExtractor脱壳工具的脱壳原理是修改了android系统的dvm虚拟机模块的代码/dalvik/libdex/DexFile.cpp文件的dexFileParse函数,在系统调用dexFileParse函数之前将加固释放出的原始dex文件从内存dump出来。

但是呢,由于一些加固如梆梆加固,会对dex的内存dump脱壳进行检测,具体的就是hook修改当前进程的read、write读写相关的函数,一旦检测到read、write读写相关的函数的操作中有对dex文件的dump行为会有对抗的处理,防止dex的内存dump,因此呢,DexExtractor脱壳工具的作者为了过掉这种内存dump的对抗,需要先将原始的dex文件数据进行base64加密然后进行写文件到sdcard中进行输出,当pull导出拿到base64加密的dex文件时还需要进行base64的解密才能获取到原始的dex文件,具体的脱壳功能见DexHacker.cpp文件。

//
// DexHacker.cpp
//
//
// Created by BunnyBlue on 6/23/15.
//
// #include "DexHacker.h"
void DexHacker::writeDex2Encoded(unsigned char *data, size_t length){ #ifdef CODE_DVM
ALOGE("--pacthed-- inject .dex length %d flag=%d",length,flags); char dexbuffer[64]={0}; char dexbufferNamed[128]={0};
char bufferProcess[256]={0}; // 获取当前进程的名称字符串
bufferProcess= getProcessName(bufferProcess);
sprintf(dexbuffer, "classes_%d", length);
strcat(dexbufferNamed,"/sdcard/"); if (bufferProcess!=NULL) {
strcat(dexbufferNamed, bufferProcess);
strcat(dexbufferNamed, dexbuffer);
}else{
ALOGE("--pacthed-- , FAULT pid not found\n");
return;
} // strcat(dexbufferNamed,dexbuffer);
strcat(dexbufferNamed,".dex"); ALOGE("--pacthed-- , %s\n", dexbufferNamed);
ALOGE("--pacthed-- debug dalvikParse find dex try write file "); // 删除原来存在的文件
int status = remove(dexbufferNamed);
if( status == 0 )
ALOGE("%s file deleted successfully.\n",dexbufferNamed);
else
{
ALOGE("Unable to delete the file\n"); } // 申请内存缓冲区备份信息
u1* buffer_data_dest=(u1*)malloc((length+1)*sizeof(u1));
// 拷贝内存中的dex文件的数据到内存缓冲区buffer_data_dest中备份
memcpy(buffer_data_dest, data, length); // 创建文件
FILE *fp = fopen(dexbufferNamed,"wb");
if(NULL==fp) { ALOGE("--pacthed-- , can't create file ! maybe you need mount sdcard again!");
ALOGE( "%s data %s\n", strerror(errno),data); } else { ALOGE("--pacthed-- create file %s ",dexbufferNamed);
int dex_lem_local = length>2048? 1024:length; // 申请内存空间保存base64加密后的dex文件的数据
unsigned char *dst=(unsigned char*)malloc(length*2.5);
unsigned long dlen=length*2.5; // 将原始的dex文件的数据进行base64加密
base64_encode(dst, &dlen, data, length);
// 将base64加密后的dex文件的数据进行写文件输出到sdcard中
fwrite(dst, dlen, 1, fp); //fwrite(data, sizeof(u1), length, fp);
ALOGE("--pacthed-- create file end "); //fflush(fp);
fclose(fp);
fp = NULL;
}
free(buffer_data_dest);
#else char dexbuffer[64]={0};
char dexbufferNamed[128]={0};
sprintf(dexbuffer, "classes_%d", length);
//strcat(dexbufferNamed,");
strcat(dexbufferNamed,dexbuffer);
strcat(dexbufferNamed,".dex"); int status = remove(dexbufferNamed); FILE *fp = fopen(dexbufferNamed,"wb");
if(NULL==fp){ } else { unsigned char *dst=(unsigned char*)malloc(length*2.5);
unsigned long dlen=length*2.5;
base64_encode(dst, &dlen, data, length); fwrite(dst, dlen, 1, fp);
//fflush(fp);
fclose(fp);
fp = NULL;
} #endif
} void DexHacker::writeEncodedDex2Dex(const char *encodedDex){ FILE *srcDexFile=fopen(encodedDex,"rb");
std::string outDexFile(encodedDex);
outDexFile.append(".read.dex"); FILE *outFile=fopen(outDexFile.c_str(), "wb"); if (srcDexFile!=NULL) {
fseek(srcDexFile,0,SEEK_END);
long fsize =ftell(srcDexFile);
rewind(srcDexFile); std::cout<<sizeof(char)<<"\nxxxxxxxx"<<fsize;
unsigned char *list=(unsigned char*)malloc(sizeof(char)*fsize);
unsigned long numread =fread(list,sizeof(char),fsize,srcDexFile);
// blue_dump_data(list, (unsigned long )fsize);
unsigned char *dst=(unsigned char*)malloc(numread);
unsigned long dlen=numread;
base64_decode(dst, &dlen, list, numread); fclose(srcDexFile); int ret=fwrite(dst, 1, dlen, outFile);
fclose(outFile);
// std::cout<<"\n"<<repeate<<"numread"<<numread;
} } char* itoa(int i, char b[]){ char const digit[] = "0123456789";
char* p = b;
if(i<0){
*p++ = '-';
i *= -1;
}
int shifter = i;
do{ //Move to where representation ends
++p;
shifter = shifter/10;
}while(shifter);
*p = '\0';
do{ //Move back, inserting digits as u go
*--p = digit[i%10];
i = i/10;
}while(i);
return b;
} // 获取当前进程的名称
char * DexHacker::getProcessName(char * buffer){ char path_t[256]={0};
// char buffer[512]={0} ; // 获取当前进程的pid
pid_t pid=getpid();
char str[15];
sprintf(str, "%d", pid);
memset(path_t, 0 , sizeof(path_t));
strcat(path_t, "/proc/");
strcat(path_t, str);
strcat(path_t, "/cmdline"); //LOG_ERROR("zhw", "path:%s", path_t);
int fd_t = open(path_t, O_RDONLY);
if(fd_t>0){ int read_count = read(fd_t, buffer, BUFLEN);
if(read_count>0){ return buffer;
}
} return NULL;
}

iiiiii.DexExtractor脱壳工具作者提供的文件的说明

关于DexExtractor脱壳工具的自行修改和扩展:根据自己的脱壳思路,编写额外的脱壳代码文件,添加自选Android系统版本的DexFile.cpp文件并将额外的脱壳代码文件添加到编译配置文件Android.mk中,然后在DexFile.cpp文件路径下进行android源码的局部模块的编译,具体编译参考见http://blog.csdn.net/qq1084283172/article/details/53365659

iiiiii.DexExtractor脱壳工具的其他代码文件

/*
* Copyright (C) 2008 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/ /*
* Access the contents of a .dex file.
*/ #include "DexFile.h"
#include "DexOptData.h"
#include "DexProto.h"
#include "DexCatch.h"
#include "Leb128.h"
#include "sha1.h"
#include "ZipArchive.h" #include <zlib.h> #include <stdlib.h>
#include <stddef.h>
#include <string.h>
#include <fcntl.h>
#include <errno.h>
#include "DexHacker.cpp" /*
* Verifying checksums is good, but it slows things down and causes us to
* touch every page. In the "optimized" world, it doesn't work at all,
* because we rewrite the contents.
*/
static const bool kVerifyChecksum = false;
static const bool kVerifySignature = false; /* (documented in header) */
char dexGetPrimitiveTypeDescriptorChar(PrimitiveType type) {
const char* string = dexGetPrimitiveTypeDescriptor(type); return (string == NULL) ? '\0' : string[0];
} /* (documented in header) */
const char* dexGetPrimitiveTypeDescriptor(PrimitiveType type) {
switch (type) {
case PRIM_VOID: return "V";
case PRIM_BOOLEAN: return "Z";
case PRIM_BYTE: return "B";
case PRIM_SHORT: return "S";
case PRIM_CHAR: return "C";
case PRIM_INT: return "I";
case PRIM_LONG: return "J";
case PRIM_FLOAT: return "F";
case PRIM_DOUBLE: return "D";
default: return NULL;
} return NULL;
} /* (documented in header) */
const char* dexGetBoxedTypeDescriptor(PrimitiveType type) {
switch (type) {
case PRIM_VOID: return NULL;
case PRIM_BOOLEAN: return "Ljava/lang/Boolean;";
case PRIM_BYTE: return "Ljava/lang/Byte;";
case PRIM_SHORT: return "Ljava/lang/Short;";
case PRIM_CHAR: return "Ljava/lang/Character;";
case PRIM_INT: return "Ljava/lang/Integer;";
case PRIM_LONG: return "Ljava/lang/Long;";
case PRIM_FLOAT: return "Ljava/lang/Float;";
case PRIM_DOUBLE: return "Ljava/lang/Double;";
default: return NULL;
}
} /* (documented in header) */
PrimitiveType dexGetPrimitiveTypeFromDescriptorChar(char descriptorChar) {
switch (descriptorChar) {
case 'V': return PRIM_VOID;
case 'Z': return PRIM_BOOLEAN;
case 'B': return PRIM_BYTE;
case 'S': return PRIM_SHORT;
case 'C': return PRIM_CHAR;
case 'I': return PRIM_INT;
case 'J': return PRIM_LONG;
case 'F': return PRIM_FLOAT;
case 'D': return PRIM_DOUBLE;
default: return PRIM_NOT;
}
} /* Return the UTF-8 encoded string with the specified string_id index,
* also filling in the UTF-16 size (number of 16-bit code points).*/
const char* dexStringAndSizeById(const DexFile* pDexFile, u4 idx,
u4* utf16Size) {
const DexStringId* pStringId = dexGetStringId(pDexFile, idx);
const u1* ptr = pDexFile->baseAddr + pStringId->stringDataOff; *utf16Size = readUnsignedLeb128(&ptr);
return (const char*) ptr;
} /*
* Format an SHA-1 digest for printing. tmpBuf must be able to hold at
* least kSHA1DigestOutputLen bytes.
*/
const char* dvmSHA1DigestToStr(const unsigned char digest[], char* tmpBuf); /*
* Compute a SHA-1 digest on a range of bytes.
*/
static void dexComputeSHA1Digest(const unsigned char* data, size_t length,
unsigned char digest[])
{
SHA1_CTX context;
SHA1Init(&context);
SHA1Update(&context, data, length);
SHA1Final(digest, &context);
} /*
* Format the SHA-1 digest into the buffer, which must be able to hold at
* least kSHA1DigestOutputLen bytes. Returns a pointer to the buffer,
*/
static const char* dexSHA1DigestToStr(const unsigned char digest[],char* tmpBuf)
{
static const char hexDigit[] = "0123456789abcdef";
char* cp;
int i; cp = tmpBuf;
for (i = 0; i < kSHA1DigestLen; i++) {
*cp++ = hexDigit[digest[i] >> 4];
*cp++ = hexDigit[digest[i] & 0x0f];
}
*cp++ = '\0'; assert(cp == tmpBuf + kSHA1DigestOutputLen); return tmpBuf;
} /*
* Compute a hash code on a UTF-8 string, for use with internal hash tables.
*
* This may or may not be compatible with UTF-8 hash functions used inside
* the Dalvik VM.
*
* The basic "multiply by 31 and add" approach does better on class names
* than most other things tried (e.g. adler32).
*/
static u4 classDescriptorHash(const char* str)
{
u4 hash = 1; while (*str != '\0')
hash = hash * 31 + *str++; return hash;
} /*
* Add an entry to the class lookup table. We hash the string and probe
* until we find an open slot.
*/
static void classLookupAdd(DexFile* pDexFile, DexClassLookup* pLookup,
int stringOff, int classDefOff, int* pNumProbes)
{
const char* classDescriptor =
(const char*) (pDexFile->baseAddr + stringOff);
const DexClassDef* pClassDef =
(const DexClassDef*) (pDexFile->baseAddr + classDefOff);
u4 hash = classDescriptorHash(classDescriptor);
int mask = pLookup->numEntries-1;
int idx = hash & mask; /*
* Find the first empty slot. We oversized the table, so this is
* guaranteed to finish.
*/
int probes = 0;
while (pLookup->table[idx].classDescriptorOffset != 0) {
idx = (idx + 1) & mask;
probes++;
}
//if (probes > 1)
// ALOGW("classLookupAdd: probes=%d", probes); pLookup->table[idx].classDescriptorHash = hash;
pLookup->table[idx].classDescriptorOffset = stringOff;
pLookup->table[idx].classDefOffset = classDefOff;
*pNumProbes = probes;
} /*
* Create the class lookup hash table.
*
* Returns newly-allocated storage.
*/
DexClassLookup* dexCreateClassLookup(DexFile* pDexFile)
{
DexClassLookup* pLookup;
int allocSize;
int i, numEntries;
int numProbes, totalProbes, maxProbes; numProbes = totalProbes = maxProbes = 0; assert(pDexFile != NULL); /*
* Using a factor of 3 results in far less probing than a factor of 2,
* but almost doubles the flash storage requirements for the bootstrap
* DEX files. The overall impact on class loading performance seems
* to be minor. We could probably get some performance improvement by
* using a secondary hash.
*/
numEntries = dexRoundUpPower2(pDexFile->pHeader->classDefsSize * 2);
allocSize = offsetof(DexClassLookup, table)
+ numEntries * sizeof(pLookup->table[0]); pLookup = (DexClassLookup*) calloc(1, allocSize);
if (pLookup == NULL)
return NULL;
pLookup->size = allocSize;
pLookup->numEntries = numEntries; for (i = 0; i < (int)pDexFile->pHeader->classDefsSize; i++) {
const DexClassDef* pClassDef;
const char* pString; pClassDef = dexGetClassDef(pDexFile, i);
pString = dexStringByTypeIdx(pDexFile, pClassDef->classIdx); classLookupAdd(pDexFile, pLookup,
(u1*)pString - pDexFile->baseAddr,
(u1*)pClassDef - pDexFile->baseAddr, &numProbes); if (numProbes > maxProbes)
maxProbes = numProbes;
totalProbes += numProbes;
} ALOGV("Class lookup: classes=%d slots=%d (%d%% occ) alloc=%d"
" total=%d max=%d",
pDexFile->pHeader->classDefsSize, numEntries,
(100 * pDexFile->pHeader->classDefsSize) / numEntries,
allocSize, totalProbes, maxProbes); return pLookup;
} /*
* Set up the basic raw data pointers of a DexFile. This function isn't
* meant for general use.
*/
void dexFileSetupBasicPointers(DexFile* pDexFile, const u1* data) {
DexHeader *pHeader = (DexHeader*) data; pDexFile->baseAddr = data;
pDexFile->pHeader = pHeader;
pDexFile->pStringIds = (const DexStringId*) (data + pHeader->stringIdsOff);
pDexFile->pTypeIds = (const DexTypeId*) (data + pHeader->typeIdsOff);
pDexFile->pFieldIds = (const DexFieldId*) (data + pHeader->fieldIdsOff);
pDexFile->pMethodIds = (const DexMethodId*) (data + pHeader->methodIdsOff);
pDexFile->pProtoIds = (const DexProtoId*) (data + pHeader->protoIdsOff);
pDexFile->pClassDefs = (const DexClassDef*) (data + pHeader->classDefsOff);
pDexFile->pLinkData = (const DexLink*) (data + pHeader->linkOff);
} /*
* Parse an optimized or unoptimized .dex file sitting in memory. This is
* called after the byte-ordering and structure alignment has been fixed up.
*
* On success, return a newly-allocated DexFile.
*/
DexFile* dexFileParse(const u1* data, size_t length, int flags)
{ //******************************添加的脱壳代码**************************
// 构建脱壳工具实例
DexHacker mDexHacker;
// 从内存dump dex文件
mDexHacker.writeDex2Encoded(data,(unsigned int)length); //******************************常规手动脱壳点************************** DexFile* pDexFile = NULL;
const DexHeader* pHeader;
const u1* magic;
int result = -1; if (length < sizeof(DexHeader)) {
ALOGE("too short to be a valid .dex");
goto bail; /* bad file format */
} pDexFile = (DexFile*) malloc(sizeof(DexFile));
if (pDexFile == NULL)
goto bail; /* alloc failure */
memset(pDexFile, 0, sizeof(DexFile)); /*
* Peel off the optimized header.
*/
if (memcmp(data, DEX_OPT_MAGIC, 4) == 0) {
magic = data;
if (memcmp(magic+4, DEX_OPT_MAGIC_VERS, 4) != 0) {
ALOGE("bad opt version (0x%02x %02x %02x %02x)",
magic[4], magic[5], magic[6], magic[7]);
goto bail;
} pDexFile->pOptHeader = (const DexOptHeader*) data;
ALOGV("Good opt header, DEX offset is %d, flags=0x%02x",
pDexFile->pOptHeader->dexOffset, pDexFile->pOptHeader->flags); /* parse the optimized dex file tables */
if (!dexParseOptData(data, length, pDexFile))
goto bail; /* ignore the opt header and appended data from here on out */
data += pDexFile->pOptHeader->dexOffset;
length -= pDexFile->pOptHeader->dexOffset;
if (pDexFile->pOptHeader->dexLength > length) {
ALOGE("File truncated? stored len=%d, rem len=%d",
pDexFile->pOptHeader->dexLength, (int) length);
goto bail;
}
length = pDexFile->pOptHeader->dexLength;
} dexFileSetupBasicPointers(pDexFile, data);
pHeader = pDexFile->pHeader; if (!dexHasValidMagic(pHeader)) {
goto bail;
} /*
* Verify the checksum(s). This is reasonably quick, but does require
* touching every byte in the DEX file. The base checksum changes after
* byte-swapping and DEX optimization.
*/
if (flags & kDexParseVerifyChecksum) {
u4 adler = dexComputeChecksum(pHeader);
if (adler != pHeader->checksum) {
ALOGE("ERROR: bad checksum (%08x vs %08x)",
adler, pHeader->checksum);
if (!(flags & kDexParseContinueOnError))
goto bail;
} else {
ALOGV("+++ adler32 checksum (%08x) verified", adler);
} const DexOptHeader* pOptHeader = pDexFile->pOptHeader;
if (pOptHeader != NULL) {
adler = dexComputeOptChecksum(pOptHeader);
if (adler != pOptHeader->checksum) {
ALOGE("ERROR: bad opt checksum (%08x vs %08x)",
adler, pOptHeader->checksum);
if (!(flags & kDexParseContinueOnError))
goto bail;
} else {
ALOGV("+++ adler32 opt checksum (%08x) verified", adler);
}
}
} /*
* Verify the SHA-1 digest. (Normally we don't want to do this --
* the digest is used to uniquely identify the original DEX file, and
* can't be computed for verification after the DEX is byte-swapped
* and optimized.)
*/
if (kVerifySignature) {
unsigned char sha1Digest[kSHA1DigestLen];
const int nonSum = sizeof(pHeader->magic) + sizeof(pHeader->checksum) +
kSHA1DigestLen; dexComputeSHA1Digest(data + nonSum, length - nonSum, sha1Digest);
if (memcmp(sha1Digest, pHeader->signature, kSHA1DigestLen) != 0) {
char tmpBuf1[kSHA1DigestOutputLen];
char tmpBuf2[kSHA1DigestOutputLen];
ALOGE("ERROR: bad SHA1 digest (%s vs %s)",
dexSHA1DigestToStr(sha1Digest, tmpBuf1),
dexSHA1DigestToStr(pHeader->signature, tmpBuf2));
if (!(flags & kDexParseContinueOnError))
goto bail;
} else {
ALOGV("+++ sha1 digest verified");
}
} if (pHeader->fileSize != length) {
ALOGE("ERROR: stored file size (%d) != expected (%d)",
(int) pHeader->fileSize, (int) length);
if (!(flags & kDexParseContinueOnError))
goto bail;
} if (pHeader->classDefsSize == 0) {
ALOGE("ERROR: DEX file has no classes in it, failing");
goto bail;
} /*
* Success!
*/
result = 0; bail:
if (result != 0 && pDexFile != NULL) {
dexFileFree(pDexFile);
pDexFile = NULL;
}
return pDexFile;
} /*
* Free up the DexFile and any associated data structures.
*
* Note we may be called with a partially-initialized DexFile.
*/
void dexFileFree(DexFile* pDexFile)
{
if (pDexFile == NULL)
return; free(pDexFile);
} /*
* Look up a class definition entry by descriptor.
*
* "descriptor" should look like "Landroid/debug/Stuff;".
*/
const DexClassDef* dexFindClass(const DexFile* pDexFile,
const char* descriptor)
{
const DexClassLookup* pLookup = pDexFile->pClassLookup;
u4 hash;
int idx, mask; hash = classDescriptorHash(descriptor);
mask = pLookup->numEntries - 1;
idx = hash & mask; /*
* Search until we find a matching entry or an empty slot.
*/
while (true) {
int offset; offset = pLookup->table[idx].classDescriptorOffset;
if (offset == 0)
return NULL; if (pLookup->table[idx].classDescriptorHash == hash) {
const char* str; str = (const char*) (pDexFile->baseAddr + offset);
if (strcmp(str, descriptor) == 0) {
return (const DexClassDef*)
(pDexFile->baseAddr + pLookup->table[idx].classDefOffset);
}
} idx = (idx + 1) & mask;
}
} /*
* Compute the DEX file checksum for a memory-mapped DEX file.
*/
u4 dexComputeChecksum(const DexHeader* pHeader)
{
const u1* start = (const u1*) pHeader; uLong adler = adler32(0L, Z_NULL, 0);
const int nonSum = sizeof(pHeader->magic) + sizeof(pHeader->checksum); return (u4) adler32(adler, start + nonSum, pHeader->fileSize - nonSum);
} /*
* Compute the size, in bytes, of a DexCode.
*/
size_t dexGetDexCodeSize(const DexCode* pCode)
{
/*
* The catch handler data is the last entry. It has a variable number
* of variable-size pieces, so we need to create an iterator.
*/
u4 handlersSize;
u4 offset;
u4 ui; if (pCode->triesSize != 0) {
handlersSize = dexGetHandlersSize(pCode);
offset = dexGetFirstHandlerOffset(pCode);
} else {
handlersSize = 0;
offset = 0;
} for (ui = 0; ui < handlersSize; ui++) {
DexCatchIterator iterator;
dexCatchIteratorInit(&iterator, pCode, offset);
offset = dexCatchIteratorGetEndOffset(&iterator, pCode);
} const u1* handlerData = dexGetCatchHandlerData(pCode); //ALOGD("+++ pCode=%p handlerData=%p last offset=%d",
// pCode, handlerData, offset); /* return the size of the catch handler + everything before it */
return (handlerData - (u1*) pCode) + offset;
} /*
* Round up to the next highest power of 2.
*
* Found on http://graphics.stanford.edu/~seander/bithacks.html.
*/
u4 dexRoundUpPower2(u4 val)
{
val--;
val |= val >> 1;
val |= val >> 2;
val |= val >> 4;
val |= val >> 8;
val |= val >> 16;
val++; return val;
}

//
// DexHacker.h
//
//
// Created by BunnyBlue on 6/23/15.
//
// #ifndef ____DexHacker__
#define ____DexHacker__
#include <iostream>
#include<string.h>
#include<stdio.h>
#include "base64.h"
#include <sys/types.h>
#include <unistd.h>
#include <stdio.h>
#include <fcntl.h>
#define BUFLEN 1024 class DexHacker{
public:
void writeDex2Encoded(unsigned char * data,size_t length);
void writeEncodedDex2Dex(const char *dexPath);
char * getProcessName(char * buffer);
};
#endif /* defined(____DexHacker__) */

/**
* \file base64.h
*
* \brief RFC 1521 base64 encoding/decoding
*
* Copyright (C) 2006-2010, Brainspark B.V.
*
* This file is part of PolarSSL (http://www.polarssl.org)
* Lead Maintainer: Paul Bakker <polarssl_maintainer at polarssl.org>
*
* All rights reserved.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program; if not, write to the Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
*/
#define POLARSSL_BASE64_C
#define POLARSSL_SELF_TEST
#ifndef POLARSSL_BASE64_H
#define POLARSSL_BASE64_H #include <string.h> #define POLARSSL_ERR_BASE64_BUFFER_TOO_SMALL -0x002A /**< Output buffer too small. */
#define POLARSSL_ERR_BASE64_INVALID_CHARACTER -0x002C /**< Invalid character in input. */ #ifdef __cplusplus
extern "C" {
#endif /**
* \brief Encode a buffer into base64 format
*
* \param dst destination buffer
* \param dlen size of the buffer
* \param src source buffer
* \param slen amount of data to be encoded
*
* \return 0 if successful, or POLARSSL_ERR_BASE64_BUFFER_TOO_SMALL.
* *dlen is always updated to reflect the amount
* of data that has (or would have) been written.
*
* \note Call this function with *dlen = 0 to obtain the
* required buffer size in *dlen
*/
int base64_encode( unsigned char *dst, size_t *dlen,
const unsigned char *src, size_t slen ); /**
* \brief Decode a base64-formatted buffer
*
* \param dst destination buffer
* \param dlen size of the buffer
* \param src source buffer
* \param slen amount of data to be decoded
*
* \return 0 if successful, POLARSSL_ERR_BASE64_BUFFER_TOO_SMALL, or
* POLARSSL_ERR_BASE64_INVALID_CHARACTER if the input data is
* not correct. *dlen is always updated to reflect the amount
* of data that has (or would have) been written.
*
* \note Call this function with *dlen = 0 to obtain the
* required buffer size in *dlen
*/
int base64_decode( unsigned char *dst, size_t *dlen,
const unsigned char *src, size_t slen );
int base64_self_test( int verbose ); #ifdef __cplusplus
}
#endif #endif /* base64.h */

/*
* RFC 1521 base64 encoding/decoding
*
* Copyright (C) 2006-2013, Brainspark B.V.
*
* This file is part of PolarSSL (http://www.polarssl.org)
* Lead Maintainer: Paul Bakker <polarssl_maintainer at polarssl.org>
*
* All rights reserved.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program; if not, write to the Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
*/ #define POLARSSL_BASE64_C
#define POLARSSL_SELF_TEST #if defined(POLARSSL_BASE64_C) #include "base64.h" #if defined(_MSC_VER) && !defined(EFIX64) && !defined(EFI32)
#include <basetsd.h>
typedef UINT32 uint32_t;
#else
#include <inttypes.h>
#endif static const unsigned char base64_enc_map[64] =
{
'A', 'B', 'C', 'D', 'E', 'F', 'G', 'H', 'I', 'J',
'K', 'L', 'M', 'N', 'O', 'P', 'Q', 'R', 'S', 'T',
'U', 'V', 'W', 'X', 'Y', 'Z', 'a', 'b', 'c', 'd',
'e', 'f', 'g', 'h', 'i', 'j', 'k', 'l', 'm', 'n',
'o', 'p', 'q', 'r', 's', 't', 'u', 'v', 'w', 'x',
'y', 'z', '0', '1', '2', '3', '4', '5', '6', '7',
'8', '9', '+', '/'
}; static const unsigned char base64_dec_map[128] =
{
127, 127, 127, 127, 127, 127, 127, 127, 127, 127,
127, 127, 127, 127, 127, 127, 127, 127, 127, 127,
127, 127, 127, 127, 127, 127, 127, 127, 127, 127,
127, 127, 127, 127, 127, 127, 127, 127, 127, 127,
127, 127, 127, 62, 127, 127, 127, 63, 52, 53,
54, 55, 56, 57, 58, 59, 60, 61, 127, 127,
127, 64, 127, 127, 127, 0, 1, 2, 3, 4,
5, 6, 7, 8, 9, 10, 11, 12, 13, 14,
15, 16, 17, 18, 19, 20, 21, 22, 23, 24,
25, 127, 127, 127, 127, 127, 127, 26, 27, 28,
29, 30, 31, 32, 33, 34, 35, 36, 37, 38,
39, 40, 41, 42, 43, 44, 45, 46, 47, 48,
49, 50, 51, 127, 127, 127, 127, 127
}; /*
* Encode a buffer into base64 format
*/
int base64_encode( unsigned char *dst, size_t *dlen,
const unsigned char *src, size_t slen )
{
size_t i, n;
int C1, C2, C3;
unsigned char *p; if( slen == 0 )
return( 0 ); n = (slen << 3) / 6; switch( (slen << 3) - (n * 6) )
{
case 2: n += 3; break;
case 4: n += 2; break;
default: break;
} if( *dlen < n + 1 )
{
*dlen = n + 1;
return( POLARSSL_ERR_BASE64_BUFFER_TOO_SMALL );
} n = (slen / 3) * 3; for( i = 0, p = dst; i < n; i += 3 )
{
C1 = *src++;
C2 = *src++;
C3 = *src++; *p++ = base64_enc_map[(C1 >> 2) & 0x3F];
*p++ = base64_enc_map[(((C1 & 3) << 4) + (C2 >> 4)) & 0x3F];
*p++ = base64_enc_map[(((C2 & 15) << 2) + (C3 >> 6)) & 0x3F];
*p++ = base64_enc_map[C3 & 0x3F];
} if( i < slen )
{
C1 = *src++;
C2 = ((i + 1) < slen) ? *src++ : 0; *p++ = base64_enc_map[(C1 >> 2) & 0x3F];
*p++ = base64_enc_map[(((C1 & 3) << 4) + (C2 >> 4)) & 0x3F]; if( (i + 1) < slen )
*p++ = base64_enc_map[((C2 & 15) << 2) & 0x3F];
else *p++ = '='; *p++ = '=';
} *dlen = p - dst;
*p = 0; return( 0 );
} /*
* Decode a base64-formatted buffer
*/
int base64_decode( unsigned char *dst, size_t *dlen,
const unsigned char *src, size_t slen )
{
size_t i, n;
uint32_t j, x;
unsigned char *p; for( i = n = j = 0; i < slen; i++ )
{
if( ( slen - i ) >= 2 &&
src[i] == '\r' && src[i + 1] == '\n' )
continue; if( src[i] == '\n' )
continue; if( src[i] == '=' && ++j > 2 )
return( POLARSSL_ERR_BASE64_INVALID_CHARACTER ); if( src[i] > 127 || base64_dec_map[src[i]] == 127 )
return( POLARSSL_ERR_BASE64_INVALID_CHARACTER ); if( base64_dec_map[src[i]] < 64 && j != 0 )
return( POLARSSL_ERR_BASE64_INVALID_CHARACTER ); n++;
} if( n == 0 )
return( 0 ); n = ((n * 6) + 7) >> 3; if( dst == NULL || *dlen < n )
{
*dlen = n;
return( POLARSSL_ERR_BASE64_BUFFER_TOO_SMALL );
} for( j = 3, n = x = 0, p = dst; i > 0; i--, src++ )
{
if( *src == '\r' || *src == '\n' )
continue; j -= ( base64_dec_map[*src] == 64 );
x = (x << 6) | ( base64_dec_map[*src] & 0x3F ); if( ++n == 4 )
{
n = 0;
if( j > 0 ) *p++ = (unsigned char)( x >> 16 );
if( j > 1 ) *p++ = (unsigned char)( x >> 8 );
if( j > 2 ) *p++ = (unsigned char)( x );
}
} *dlen = p - dst; return( 0 );
} #if defined(POLARSSL_SELF_TEST) #include <string.h>
#include <stdio.h> static const unsigned char base64_test_dec[64] =
{
0x24, 0x48, 0x6E, 0x56, 0x87, 0x62, 0x5A, 0xBD,
0xBF, 0x17, 0xD9, 0xA2, 0xC4, 0x17, 0x1A, 0x01,
0x94, 0xED, 0x8F, 0x1E, 0x11, 0xB3, 0xD7, 0x09,
0x0C, 0xB6, 0xE9, 0x10, 0x6F, 0x22, 0xEE, 0x13,
0xCA, 0xB3, 0x07, 0x05, 0x76, 0xC9, 0xFA, 0x31,
0x6C, 0x08, 0x34, 0xFF, 0x8D, 0xC2, 0x6C, 0x38,
0x00, 0x43, 0xE9, 0x54, 0x97, 0xAF, 0x50, 0x4B,
0xD1, 0x41, 0xBA, 0x95, 0x31, 0x5A, 0x0B, 0x97
}; static const unsigned char base64_test_enc[] =
"JEhuVodiWr2/F9mixBcaAZTtjx4Rs9cJDLbpEG8i7hPK"
"swcFdsn6MWwINP+Nwmw4AEPpVJevUEvRQbqVMVoLlw=="; /*
* Checkup routine
*/
int base64_self_test( int verbose )
{
size_t len;
const unsigned char *src;
unsigned char buffer[128]; if( verbose != 0 )
printf( " Base64 encoding test: " ); len = sizeof( buffer );
src = base64_test_dec; if( base64_encode( buffer, &len, src, 64 ) != 0 ||
memcmp( base64_test_enc, buffer, 88 ) != 0 )
{
if( verbose != 0 )
printf( "failed\n" ); return( 1 );
} if( verbose != 0 )
printf( "passed\n Base64 decoding test: " ); len = sizeof( buffer );
src = base64_test_enc; if( base64_decode( buffer, &len, src, 88 ) != 0 ||
memcmp( base64_test_dec, buffer, 64 ) != 0 )
{
if( verbose != 0 )
printf( "failed\n" ); return( 1 );
} if( verbose != 0 )
printf( "passed\n\n" ); return( 0 );
} #endif #endif

# Copyright (C) 2008 The Android Open Source Project
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License. LOCAL_PATH:= $(call my-dir) dex_src_files := \
CmdUtils.cpp \
DexCatch.cpp \
DexClass.cpp \
DexDataMap.cpp \
DexDebugInfo.cpp \
DexFile.cpp \
DexInlines.cpp \
DexOptData.cpp \
DexOpcodes.cpp \
DexProto.cpp \
DexSwapVerify.cpp \
DexUtf.cpp \
InstrUtils.cpp \
Leb128.cpp \
OptInvocation.cpp \
sha1.cpp \
SysUtil.cpp \
ZipArchive.cpp\
base64.c dex_include_files := \
dalvik \
external/zlib \
external/safe-iop/include ##
##
## Build the device version of libdex
##
##
ifneq ($(SDK_ONLY),true) # SDK_only doesn't need device version include $(CLEAR_VARS)
LOCAL_CFLAGS += -DCODE_DVM -fpermissive
LOCAL_CXXFLAGS += -DCODE_DVM -fpermissive
LOCAL_CPPFLAGS += -DCODE_DVM -fpermissive
#LOCAL_CFLAGS += -UNDEBUG -DDEBUG=1
LOCAL_SRC_FILES := $(dex_src_files)
LOCAL_C_INCLUDES += $(dex_include_files)
LOCAL_STATIC_LIBRARIES := liblog
LOCAL_MODULE_TAGS := optional
LOCAL_MODULE := libdex
include $(BUILD_STATIC_LIBRARY) endif # !SDK_ONLY ##
##
## Build the host version of libdex
##
##
include $(CLEAR_VARS)
LOCAL_CFLAGS += -DCODE_DVM
LOCAL_CXXFLAGS += -DCODE_DVM -fpermissive
LOCAL_CPPFLAGS += -DCODE_DVM -fpermissive
LOCAL_SRC_FILES := $(dex_src_files)
LOCAL_C_INCLUDES += $(dex_include_files)
LOCAL_STATIC_LIBRARIES := liblog
LOCAL_MODULE_TAGS := optional
LOCAL_MODULE := libdex
include $(BUILD_HOST_STATIC_LIBRARY)

好啦,忙了一下午,一点点的积累和进步.........

DexExtractor的原理分析和使用说明的更多相关文章

  1. DexHunter的原理分析和使用说明(二)

    本文博客地址:http://blog.csdn.net/qq1084283172/article/details/53715325 前面的博文<Android通用脱壳工具DexHunter的原理 ...

  2. drizzleDumper的原理分析和使用说明

    https://blog.csdn.net/qq1084283172/article/details/53561622 版权声明:本文为博主原创文章,未经博主允许不得转载. https://blog. ...

  3. DexHunter的原理分析和使用说明(一)

    本文博客地址:http://blog.csdn.net/qq1084283172/article/details/53710357 Android通用脱壳工具DexHunter是2015年下半年,大牛 ...

  4. DexHunter在Dalvik虚拟机模式下的脱壳原理分析

    本文博客地址:http://blog.csdn.net/qq1084283172/article/details/78494671 在前面的博客<DexHunter的原理分析和使用说明(一)&g ...

  5. android脱壳之DexExtractor原理分析[zhuan]

    http://www.cnblogs.com/jiaoxiake/p/6818786.html内容如下 导语: 上一篇我们分析android脱壳使用对dvmDexFileOpenPartial下断点的 ...

  6. android脱壳之DexExtractor原理分析

    导语: 上一篇我们分析android脱壳使用对dvmDexFileOpenPartial下断点的原理,使用这种方法脱壳的有2个缺点: 1.  需要动态调试 2.  对抗反调试方案 为了提高工作效率, ...

  7. Handler系列之原理分析

    上一节我们讲解了Handler的基本使用方法,也是平时大家用到的最多的使用方式.那么本节让我们来学习一下Handler的工作原理吧!!! 我们知道Android中我们只能在ui线程(主线程)更新ui信 ...

  8. Java NIO使用及原理分析(1-4)(转)

    转载的原文章也找不到!从以下博客中找到http://blog.csdn.net/wuxianglong/article/details/6604817 转载自:李会军•宁静致远 最近由于工作关系要做一 ...

  9. 原子类java.util.concurrent.atomic.*原理分析

    原子类java.util.concurrent.atomic.*原理分析 在并发编程下,原子操作类的应用可以说是无处不在的.为解决线程安全的读写提供了很大的便利. 原子类保证原子的两个关键的点就是:可 ...

随机推荐

  1. cve-2018-2893 weblogic -WLS核心组件反序列化

    漏洞分析 https://www.freebuf.com/column/178103.html https://www.freebuf.com/vuls/177868.html 攻击者可以在未授权的情 ...

  2. 分布式基础理论之CAP 和BASE

    前言 本文聊聊 CAP 定理和 BASE 理论. CAP 定理 C:一致性(Consistency) 数据的强一致性.希望分布式系统只读到最新写入的数据 A:可用性(Availability) 分布式 ...

  3. webpack4.x 从零开始配置vue 项目(一)基础搭建项目

    序 现在依旧记得第一次看到webpack3.x 版本配置时候的状态  刚开始看到这些真的是一脸懵.希望这篇文章能帮到刚开始入门的同学. webpack 是什么? webpack是一个模块化打包工具,w ...

  4. shiro太复杂?快来试试这个轻量级权限认证框架!

    前言 在java的世界里,有很多优秀的权限认证框架,如Apache Shiro.Spring Security 等等.这些框架背景强大,历史悠久,其生态也比较齐全. 但同时这些框架也并非十分完美,在前 ...

  5. 学习Python的书籍——入门到进阶

    入门读物 <Python基础教程>(Beginning Python From Novice to Professional) <Python学习手册>(Learning Py ...

  6. python3 byte,int,str转换

    1 # bytes 与 int 2 b=b'\x01\x02' 3 num=int.from_bytes(b,'little') 4 print('bytes转int:',num) 5 6 b1=nu ...

  7. ASP.NET Core分布式日志系统ELK实战演练

    一.ELK简介  ELK是Elasticsearch.Logstash和Kibana首字母的缩写.这三者均是开源软件,这三套开源工具组合起来形成了一套强大的集中式日志管理平台. •  Elastics ...

  8. DAOS 分布式异步对象存储|架构设计

    分布式异步对象存储 (DAOS) 是一个开源的对象存储系统,专为大规模分布式非易失性内存 (NVM, Non-Volatile Memory) 设计,利用了SCM(Storage-Class Memo ...

  9. vmstat-观察进程上线文切换

    vmstat 是一款指定采样周期和次数的功能性监测工具,我们可以看到,它不仅可以统计内存的使用情况,还可以观测到 CPU 的使用率.swap 的使用情况.但 vmstat 一般很少用来查看内存的使用情 ...

  10. [矩阵乘法]裴波拉契数列III

    [ 矩 阵 乘 法 ] 裴 波 拉 契 数 列 I I I [矩阵乘法]裴波拉契数列III [矩阵乘法]裴波拉契数列III Description 求数列f[n]=f[n-1]+f[n-2]+1的第N ...