hdu5253最小生成树
题意:(中文题,直接粘过来吧)
连接的管道
老 Jack 有一片农田,以往几年都是靠天吃饭的。但是今年老天格外的不开眼,大旱。所以老 Jack 决定用管道将他的所有相邻的农田全部都串联起来,这样他就可以从远处引水过来进行灌溉了。当老 Jack 买完所有铺设在每块农田内部的管道的时候,老 Jack 遇到了新的难题,因为每一块农田的地势高度都不同,所以要想将两块农田的管道链接,老 Jack 就需要额外再购进跟这两块农田高度差相等长度的管道。
现在给出老 Jack农田的数据,你需要告诉老 Jack 在保证所有农田全部可连通灌溉的情况下,最少还需要再购进多长的管道。另外,每块农田都是方形等大的,一块农田只能跟它上下左右四块相邻的农田相连通。
Input
第一行输入一个数字T(T≤10),代表输入的样例组数
输入包含若干组测试数据,处理到文件结束。每组测试数据占若干行,第一行两个正整数 N,M(1≤N,M≤1000),代表老 Jack 有N行*M列个农田。接下来 N 行,每行 M 个数字,代表每块农田的高度,农田的高度不会超过100。数字之间用空格分隔。
Output
对于每组测试数据输出两行:
第一行输出:"Case #i:"。i代表第i组测试数据。
第二行输出 1 个正整数,代表老 Jack 额外最少购进管道的长度。
Sample Input
2
4 3
9 12 4
7 8 56
32 32 43
21 12 12
2 3
34 56 56
12 23 4
Sample Output
Case #1:
82
Case #2:
74
思路:
把所有点连接在一起的最下费用,直接最小生成树就行了,一共是1000*1000*2条边,时间复杂度没啥问题,其实总感觉这个题目有点别扭,就是水流的方向问题,感觉是最小树形图,哎!想多了。
#include<stdio.h>
#include<string.h>
#include<algorithm>
#define N_node 1000*1000+10
#define N_edge 1000 * 1000 * 2 + 10
using namespace std;
typedef struct
{
int a ,b ,c;
}EDGE;
EDGE E[N_edge];
int map[1005][1005];
bool camp(EDGE a ,EDGE b)
{
return a.c < b.c;
}
int mer[N_node];
int finds(int x)
{
return x == mer[x] ? x : mer[x] = finds(mer[x]);
}
int abss(int x)
{
return x > 0 ? x : -x;
}
int main ()
{
int t ,n ,m ,i ,j ,cas = 1;
scanf("%d" ,&t);
while(t--)
{
scanf("%d %d" ,&n ,&m);
for(i = 1 ;i <= n ;i ++)
for(j = 1 ;j <= m ;j ++)
scanf("%d" ,&map[i][j]);
int nowid = 0;
for(i = 1 ;i <= n ;i ++)
for(j = 1 ;j <= m ;j ++)
{
int now = (i - 1) * m + j;
mer[now] = now;
if(j < m)
{
nowid ++;
E[nowid].a = now;
E[nowid].b = (i - 1) * m + j + 1;
E[nowid].c = abss(map[i][j] - map[i][j+1]);
}
if(i < n)
{
nowid ++;
E[nowid].a = now;
E[nowid].b = (i - 1 + 1) * m + j;
E[nowid].c = abss(map[i][j] - map[i+1][j]);
}
}
sort(E + 1 ,E + nowid + 1 ,camp);
int sum = 0;
for(i = 1 ;i <= nowid ;i ++)
{
int a = finds(E[i].a);
int b = finds(E[i].b);
if(a != b)
{
mer[a] = b;
sum += E[i].c;
}
}
printf("Case #%d:\n" ,cas ++);
printf("%d\n" ,sum);
}
return 0;
}
hdu5253最小生成树的更多相关文章
- [hdu5253] 最小生成树,Kruskal
题意:有n*m个单位的农田,给定每个单位农田地势高低,现在需要灌溉所有农田,如果把水引入相邻的农田里需要的管道长度为两者的高度差.求最少的管道长度花费. 思路:比较明显的最小生成树问题,相邻两点之间连 ...
- 最小生成树练习2(Kruskal)
两个BUG鸣翠柳,一行代码上西天... hdu4786 Fibonacci Tree(生成树)问能否用白边和黑边构成一棵生成树,并且白边数量是斐波那契数. 题解:分别优先加入白边和黑边,求出生成树能包 ...
- 最小生成树(Kruskal算法-边集数组)
以此图为例: package com.datastruct; import java.util.Scanner; public class TestKruskal { private static c ...
- 最小生成树计数 bzoj 1016
最小生成树计数 (1s 128M) award [问题描述] 现在给出了一个简单无向加权图.你不满足于求出这个图的最小生成树,而希望知道这个图中有多少个不同的最小生成树.(如果两颗最小生成树中至少有一 ...
- poj 1251 Jungle Roads (最小生成树)
poj 1251 Jungle Roads (最小生成树) Link: http://poj.org/problem?id=1251 Jungle Roads Time Limit: 1000 ...
- 【BZOJ 1016】【JSOI 2008】最小生成树计数
http://www.lydsy.com/JudgeOnline/problem.php?id=1016 统计每一个边权在最小生成树中使用的次数,这个次数在任何一个最小生成树中都是固定的(归纳证明). ...
- 最小生成树---Prim算法和Kruskal算法
Prim算法 1.概览 普里姆算法(Prim算法),图论中的一种算法,可在加权连通图里搜索最小生成树.意即由此算法搜索到的边子集所构成的树中,不但包括了连通图里的所有顶点(英语:Vertex (gra ...
- Delaunay剖分与平面欧几里得距离最小生成树
这个东西代码我是对着Trinkle的写的,所以就不放代码了.. Delaunay剖分的定义: 一个三角剖分是Delaunay的当且仅当其中的每个三角形的外接圆内部(不包括边界)都没有点. 它的存在性是 ...
- 最小生成树(prim&kruskal)
最近都是图,为了防止几次记不住,先把自己理解的写下来,有问题继续改.先把算法过程记下来: prime算法: 原始的加权连通图——————D被选作起点,选与之相连的权值 ...
随机推荐
- Microsoft Teams 2021最新功能发布解读 – 会议篇
正在进行的2021年的Microsoft Ignite大会,发布了一系列跟Microsoft Teams相关的新功能,英文介绍请参考 https://techcommunity.microsoft.c ...
- 医学图像配准 | Voxelmorph 微分同胚 | MICCAI2019
文章转载:微信公众号「机器学习炼丹术」 作者:炼丹兄(已授权) 联系方式:微信cyx645016617(欢迎交流) 论文题目:'Unsupervised Learning for Fast Proba ...
- hibernate 中持久化标识 OID
OID 全称是 Object Identifier,又叫做对象标识符 是 hibernate 用于区分两个对象是否是同一个对象的标识的方法 标识符的作用:可以让 hibernate 来区分多个对象是否 ...
- IaaS, PaaS和SaaS的区别
从小型企业到全球企业,云都是一个非常热门的话题,它是一个非常广泛的概念,涵盖了很多在线领域. 无论是应用程序还是基础架构部署,当您开始考虑将业务转移到云时,了解各种云服务的差异和优势比以往任何时候都更 ...
- vscode配置c\c++环境
目录 一.安装vscode 二.安装插件以及配置c\c++编译环境 1. 安装以下两个插件 2. 配置编译环境 一.安装mingw64(推荐) 方法一 方法二 二.如果你安装过visual studi ...
- pycharm在debug时总是报UnicodeDecodeError
1,原文链接 解决pycharm run 正常 debug 报 UnicodeDecodeError 错误的问题 2,解决方法 首先尝试 如果上面还不行
- greenplum6.14、GPCC6.4安装详解
最近在做gp的升级和整改,所以把做的内容整理下,这篇文章主要是基于gp6.14的安装,主要分为gp,gpcc,pxf的一些安装和初始化.本文为博客园作者所写: 一寸HUI,个人博客地址:https:/ ...
- DAOS 分布式异步对象存储|故障模型
DAOS 依靠大规模分布式单端口存储.因此,每个 Target 实际上都是一个单独的失败点. DAOS 通过在不同的容错域中提供 Target 间的冗余来实现数据和元数据的可用性和持久性.DAOS 内 ...
- Codeforces-121C(逆康托展开)
题目大意: 给你两个数n,k求n的全排列的第k小,有多少满足如下条件的数: 首先定义一个幸运数字:只由4和7构成 对于排列p[i]满足i和p[i]都是幸运数字 思路: 对于n,k<=1e9 一眼 ...
- kubernetes使用statefulset部署mongoDB 单机版 自定义配置文件、密码等
注: 官方镜像地址: https://hub.docker.com/_/mongo?tab=description docker版的mongo移除了默认的/etc/mongo.conf, 修改了db数 ...