P7099-[yLOI2020]灼【数学期望,结论】
正题
题目链接:https://www.luogu.com.cn/problem/P7099
题目大意
给出\(n\)个坐标轴上的点,\(q\)次询问从某点出发每次等概率向左或者向右一格求到达某个给出点的期望步数。
保证每个询问点左右都有目标点
\(1\leq n\leq 10^5,1\leq q\leq 5\times 10^6,1\leq x_i,y_i\leq 10^9\)
解题思路
每个询问具体分析,离左边点的距离为\(l\),右边点的距离为\(r\)
设\(f_i\)表示从\(i\)出发到达终点的期望距离,那么有
\]
然后\(f_{-l}=f_r=0\)然后求\(f_0\)。
然后拆出来
\]
\]
也就是\(f\)数组两次差分是一个常数,所以说\(f\)可以被表示成一个二次函数,设\(f_x=ax^2+bx+c\),那么\(f'_x=f_{x}-f_{x-1}=2ax-a+b\),然后\(f''_x=f'_{x}-f'_{x-1}=2a=-2\),所以\(f_x=-x^2+bx+c\)。
因为知道零点\(\left\{\begin{matrix}-(-l)^2+b(-l)+c=0\\-r^2+br+c=0\end{matrix}\right.\),所以解出来\(\left\{\begin{matrix}b=r-l\\c=l\times r\end{matrix}\right.\)
所以其实答案就是\(l\times r\)
时间复杂度\(O(n\log n)\)
code
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cctype>
using namespace std;
const int N=1e5+10,P=998244353;
int T,n,q,a[N];
int read(){
int x=0,f=1;char c=getchar();
while(!isdigit(c)){if(c=='-')f=-f;c=getchar();}
while(isdigit(c)){x=(x<<1)+(x<<3)+c-'0';c=getchar();}
return x*f;
}
int main()
{
T=read();n=read();q=read();
for(int i=1;i<=n;i++)a[i]=read();
sort(a+1,a+1+n);
int k=1,p1=0,p2=0,p3=0,p4=2147483647;
for(int i=1;i<=q;i++){
int x=read();
while(k<n&&a[k]<x)k++;
int ans=1ll*(a[k]-x)*(x-a[k-1])%P;
p1^=ans;p2+=(ans&1);
p3=max(p3,ans);p4=min(p4,ans);
}
printf("%d\n%d\n%d\n%d",p1,p2,p3,p4);
return 0;
}
P7099-[yLOI2020]灼【数学期望,结论】的更多相关文章
- [BZOJ 3143][HNOI2013]游走(数学期望)
题目:http://www.lydsy.com:808/JudgeOnline/problem.php?id=3143 分析: 易得如果知道了每条边经过的数学期望,那就可以贪心着按每条边的期望的大小赋 ...
- Codeforces Round #259 (Div. 2) C - Little Pony and Expected Maximum (数学期望)
题目链接 题意 : 一个m面的骰子,掷n次,问得到最大值的期望. 思路 : 数学期望,离散时的公式是E(X) = X1*p(X1) + X2*p(X2) + …… + Xn*p(Xn) p(xi)的是 ...
- 数学期望和概率DP题目泛做(为了对应AD的课件)
题1: Uva 1636 Headshot 题目大意: 给出一个000111序列,注意实际上是环状的.问是0出现的概率大,还是当前是0,下一个还是0的概率大. 问题比较简单,注意比较大小: A/C & ...
- [2013山东ACM]省赛 The number of steps (可能DP,数学期望)
The number of steps nid=24#time" style="padding-bottom:0px; margin:0px; padding-left:0px; ...
- 【BZOJ2134】单位错选(数学期望,动态规划)
[BZOJ2134]单位错选(数学期望,动态规划) 题面 BZOJ 题解 单独考虑相邻的两道题目的概率就好了 没了呀.. #include<iostream> #include<cs ...
- 【BZOJ1415】【NOI2005】聪聪和可可(动态规划,数学期望)
[BZOJ1415][NOI2005]聪聪和可可(动态规划,数学期望) 题面 BZOJ 题解 先预处理出当可可在某个点,聪聪在某个点时 聪聪会往哪里走 然后记忆化搜索一下就好了 #include< ...
- 【Luogu1291】百事世界杯之旅(动态规划,数学期望)
[Luogu1291]百事世界杯之旅(动态规划,数学期望) 题面 洛谷 题解 设\(f[i]\)表示已经集齐了\(i\)个名字的期望 现在有两种方法: 先说我自己的: \[f[i]=f[i-1]+1+ ...
- 【BZOJ4872】分手是祝愿(动态规划,数学期望)
[BZOJ4872]分手是祝愿(动态规划,数学期望) 题面 BZOJ 题解 对于一个状态,如何求解当前的最短步数? 从大到小枚举,每次把最大的没有关掉的灯关掉 暴力枚举因数关就好 假设我们知道了当前至 ...
- 【BZOJ3143】游走(高斯消元,数学期望)
[BZOJ3143]游走(高斯消元,数学期望) 题面 BZOJ 题解 首先,概率不会直接算... 所以来一个逼近法算概率 这样就可以求出每一条边的概率 随着走的步数的增多,答案越接近 (我卡到\(50 ...
随机推荐
- docker运行gerrit(代码审查工具)
gerrit是什么? Gerrit,一种免费.开放源代码的代码审查软件,使用网页界面. gerrit背景 Gerrit,一种免费.开放源代码的代码审查软件,使用网页界面.利用网页浏览器,同一个团队的软 ...
- ASP.NET Core:依赖注入
ASP.NET Core的底层设计支持和使用依赖注入.ASP.NET Core应用程序可以利用内置的框架服务将它们注入到启动类的方法中,并且应用程序服务能够配置注入.由ASP.NET Core提供的默 ...
- 【springcloud】配置中心(Config-Server)
转自:https://blog.csdn.net/pengjunlee/article/details/88061736 参考文章 Spring Cloud 配置中心为分布式系统中的服务器端和客户端提 ...
- windows下删除文件夹里的 .svn
windows下: 删除文件夹里的 .svn, cmd 进入相应目录 运行 for /r ./ %a in (./) do @if exist "%a/.svn" rd ...
- HTML基本语法(慕课网学习笔记)
标题 <!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8& ...
- JAVA垃圾回收分代处理思想
原文链接:http://www.cnblogs.com/laoyangHJ/archive/2011/08/17/JVM.html JVM分代垃圾回收策略的基础概念 JVM分代垃圾回收策略的基础概念 ...
- 创建File类 及 this.getClass().getResource()方法 用到的文件路径的问题
1 package test; 2 3 import java.io.*; 4 import java.util.Scanner; 5 6 public class TestResource { 7 ...
- 将VSCode添加至右键菜单(Windows下)
时间:2018-11-09 记录:byzqy 问题: Windows上面安装Visual Studio Code编辑器后,常常会因为安装的时候忘记勾选等原因,没有将"Open with Co ...
- Linux核心知识
电脑:辅助人脑的工具 现在的人们几乎无时无刻都会碰电脑!不管是桌上型电脑(桌机).笔记型电脑(笔电).平板电脑.智慧型手机等等,这些东西都算是电脑.虽然接触的这么多,但是,你了解电脑里面的元件有什么吗 ...
- Win10 安装WSL2与 Linux子系统
Win10安装Linux子系统 1. 正常情况 步骤1 - 启用 Windows Linux版本子系统(Windows Subsystem for Linux) dism.exe /online /e ...