正题

题目链接:https://www.luogu.com.cn/problem/P4180


题目大意

\(n\)个点\(m\)条边的一张无向图,求它的严格次小生成树。

\(1\leq n\leq 10^5,1\leq m\leq 3\times 10^5\)


解题思路

一定存在一种严格次小生成树和最小生成树只差一条边,感性理解的话大概就是如果有两条不同那么肯定有一条可以替换成另一条要么更优要么不变。

所以我们可以枚举一条不选的边\((u,v,w)\)然后找到最小生成树上\(u,v\)路径最大的权值\(k\)替换。

但是发现有可能恰好\(w=k\),所以我们不只需要统计最大的权值,还要统计一个严格次大的,如果等于就选择严格次大的。

时间复杂度\(O(n\log n)\)


code

#include<cstdio>
#include<cstring>
#include<algorithm>
#define ll long long
using namespace std;
const ll N=1e5+10,T=18;
struct enode{
ll x,y,w,v;
}e[3*N];
struct node{
ll to,next,w;
}a[N<<1];
ll n,m,tot,ls[N],fa[N],dep[N];
ll ans,sum,f[N][T],g[N][T][2];
bool cmp(enode x,enode y)
{return x.w<y.w;}
ll find(ll x)
{return (fa[x]==x)?x:(fa[x]=find(fa[x]));}
void addl(ll x,ll y,ll w){
a[++tot].to=y;
a[tot].next=ls[x];
ls[x]=tot;a[tot].w=w;
return;
}
void dfs(ll x,ll fa){
dep[x]=dep[fa]+1;
for(ll i=ls[x];i;i=a[i].next){
ll y=a[i].to;
if(y==fa)continue;
f[y][0]=x;g[y][0][0]=a[i].w;
dfs(y,x);
}
return;
}
void calc(ll &mx,ll &mi,ll x){
if(x>mx)mi=mx,mx=x;
else if(x>mi&&x!=mx)mi=x;
return;
}
void calccc(ll x,ll y,ll w){
if(x==y)return;
if(dep[x]>dep[y])swap(x,y);
ll mx=-1,mi=-1;
for(ll i=T-1;i>=0;i--)
if(dep[f[y][i]]>=dep[x]){
calc(mx,mi,g[y][i][0]);
calc(mx,mi,g[y][i][1]);
y=f[y][i];
}
if(x!=y){
for(ll i=T-1;i>=0;i--)
if(f[x][i]!=f[y][i]){
calc(mx,mi,g[x][i][0]);
calc(mx,mi,g[x][i][1]);
calc(mx,mi,g[y][i][0]);
calc(mx,mi,g[y][i][1]);
x=f[x][i];y=f[y][i];
}
calc(mx,mi,g[x][0][0]);
calc(mx,mi,g[x][0][1]);
calc(mx,mi,g[y][0][0]);
calc(mx,mi,g[y][0][1]);
}
if(w!=mx)ans=min(ans,sum+w-mx);
else if(mi>=0)ans=min(ans,sum+w-mi);
return;
}
signed main()
{
scanf("%lld%lld",&n,&m);
for(ll i=1;i<=m;i++)
scanf("%lld%lld%lld",&e[i].x,&e[i].y,&e[i].w);
sort(e+1,e+1+m,cmp);
for(ll i=1;i<=n;i++)fa[i]=i;
for(ll i=1;i<=m;i++){
ll x=find(e[i].x),y=find(e[i].y);
if(x==y)continue;
addl(e[i].x,e[i].y,e[i].w);
addl(e[i].y,e[i].x,e[i].w);
fa[x]=y;e[i].v=1;sum+=e[i].w;
}
memset(g,-1,sizeof(g));
dfs(1,1);
for(ll j=1;j<T;j++)
for(ll i=1;i<=n;i++){
f[i][j]=f[f[i][j-1]][j-1];
calc(g[i][j][0],g[i][j][1],g[i][j-1][0]);
calc(g[i][j][0],g[i][j][1],g[i][j-1][1]);
calc(g[i][j][0],g[i][j][1],g[f[i][j-1]][j-1][0]);
calc(g[i][j][0],g[i][j][1],g[f[i][j-1]][j-1][1]);
}
ans=1e18;
for(ll i=1;i<=m;i++)
if(!e[i].v)calccc(e[i].x,e[i].y,e[i].w);
printf("%lld\n",ans);
return 0;
}

P4180-[BJWC2010]严格次小生成树【Kruskal,倍增】的更多相关文章

  1. P4180 [BJWC2010]严格次小生成树

    P4180 [BJWC2010]严格次小生成树 P4180 题意 求出一个无向联通图的严格次小生成树.严格次小生成树的定义为边权和大于最小生成树的边权和但不存在另一棵生成树的边权和在最小生成树和严格次 ...

  2. 【题解】洛谷P4180 [BJWC2010] 严格次小生成树(最小生成树+倍增求LCA)

    洛谷P4180:https://www.luogu.org/problemnew/show/P4180 前言 这可以说是本蒟蒻打过最长的代码了 思路 先求出此图中的最小生成树 权值为tot 我们称这棵 ...

  3. POJ 1679 The Unique MST:次小生成树【倍增】

    题目链接:http://poj.org/problem?id=1679 题意: 给你一个图,问你这个图的最小生成树是否唯一. 题解: 求这个图的最小生成树和次小生成树.如果相等,则说明不唯一. 次小生 ...

  4. [BJWC2010]严格次小生成树(LCA,最小生成树)

    [BJWC2010]严格次小生成树 题目描述 小C最近学了很多最小生成树的算法,Prim算法.Kurskal算法.消圈算法等等.正当小C洋洋得意之时,小P又来泼小C冷水了.小P说,让小C求出一个无向图 ...

  5. 洛谷P4180 [Beijing2010组队]次小生成树Tree(最小生成树,LCT,主席树,倍增LCA,倍增,树链剖分)

    洛谷题目传送门 %%%TPLY巨佬和ysner巨佬%%% 他们的题解 思路分析 具体思路都在各位巨佬的题解中.这题做法挺多的,我就不对每个都详细讲了,泛泛而谈吧. 大多数算法都要用kruskal把最小 ...

  6. 洛谷 P4180 【模板】严格次小生成树[BJWC2010]【次小生成树】

    严格次小生成树模板 算法流程: 先用克鲁斯卡尔求最小生成树,然后给这个最小生成树树剖一下,维护边权转点权,维护最大值和严格次大值. 然后枚举没有被选入最小生成树的边,在最小生成树上查一下这条边的两端点 ...

  7. 【洛谷P4180】严格次小生成树

    题目大意:给定一个 N 个顶点,M 条边的带权无向图,求该无向图的一个严格次小生成树. 引理:有至少一个严格次小生成树,和最小生成树之间只有一条边的差异. 题解: 通过引理可以想到一个暴力,即:先求出 ...

  8. [BJWC2010] 严格次小生成树

    [BJWC2010]严格次小生成树算法及模板 所谓次小生成树,即边权之和第二小的生成树,但所谓严格,就是不能和最小的那个相等. 求解严格次小生成树的方法一般有倍增和LCT两种.当然LCT那么高级的我当 ...

  9. 【bzoj1977】【严格次小生成树】倍增维护链上最大次大值

    (上不了p站我要死了,侵权度娘背锅) Description 小 C 最近学了很多最小生成树的算法,Prim 算法.Kurskal 算法.消圈算法等等. 正当小 C 洋洋得意之时,小 P 又来泼小 C ...

  10. UVA10462Is There A Second Way Left? —— 次小生成树 kruskal算法

    题目链接:https://vjudge.net/problem/UVA-10462 Nasa, being the most talented programmer of his time, can’ ...

随机推荐

  1. git忽略文件夹提交以及gitignore修改后不生效的解决办法

    1.在 .gitgnore 文件加入需要忽略的问价夹正则表达式: 在配置完以后提交代码,你可能会发现git忽略配置不生效! 解决办法,将缓存的文件重新添加一下即可 2.打开命令行,将下面三个命令复制粘 ...

  2. 如何在github上fork以及同步原作者代码

    参考网址:https://blog.csdn.net/llll2020/article/details/86140488 转  GitHub上fork别人打代码后如何保持和原作者同步的更新 </ ...

  3. Nacos集群部署:

    Nacos集群部署: 官网:    https://nacos.io/zh-cn/docs/cluster-mode-quick-start.html 1: 下载 Nacos1.2.0 链接:http ...

  4. Springboot使用MatrixVariable 注解

        根据 URI 规范 RFC 3986 中 URL 的定义,路径片段中可以可以包含键值对.规范中没对对应的术语.一般 "URL 路径参数" 可以被应用,尽管更加独特的 &qu ...

  5. Js/jquery常用

    id属性不能有空格 1. js判断checkebox是否被选中 var ischecked = document.getElementById("xxx").checked  // ...

  6. Vue.JS快速上手(指令和实例方法)

    1.声明式渲染 首先,我们要知道Vue是声明式渲染,那啥是声明式渲染,我们只需要告诉程序我们想要什么结果,其他的交给程序来做.与声明式渲染相对的是命令式渲染,即命令我们的程序去做什么,程序就会跟着你的 ...

  7. 这些经常被忽视的SQL错误用法,你有没有踩过坑?

    之前已经讲过mysql的性能优化,感兴趣的朋友可以看看之前的文章,<史上最全的MySQL高性能优化实战总结!>.但是有些问题其实是我们自身的SQL语句有问题导致的.今天就来总结哪些经常被我 ...

  8. Docker私有镜像仓库Harbor

    一.安装Harbor(离线安装包的方式安装) 1.解压离线包 2.进入harbor目录中编辑harbor.yml 3.安装docker-compose yum -y install docker-co ...

  9. C++11多线程编程

    1. 多线程编程 在进行桌面应用程序开发的时候, 假设应用程序在某些情况下需要处理比较复杂的逻辑, 如果只有一个线程去处理,就会导致窗口卡顿,无法处理用户的相关操作.这种情况下就需要使用多线程,其中一 ...

  10. 未能找到源类型“DbSet<T>”的查询模式的实现。未找到“Select”

    使用EF6.0的模型优先模式进行开发,遇到了报错,如下图 后来发现是没引用using System.Linq; 引用后就不报错了