LCT模板(学习笔记)(洛谷3690)(加边,删边,修改点权)
最近学习了一波LCT qwq
强势安利Flashhu的博客!!!!!
真的特别详细(可惜我不会弄链接)
如果有想要学习\(LCT\)的同学,可以直接看他的博客
我这里就简单写一点自己的体会啊。
\(LCT\)大致上就是一个支持加边,删边,维护子树信息,路径修改,维护路径信息的一个数据结构
本质上LCT是一个实虚链划分
代码的话,主要是分为几个部分
首先是判断这个点是不是根 和 其儿子关系,也就是\(notroot\)和\(son\)函数
int son(int x)
{
if (ch[fa[x]][0]==x)
return 0;
else return 1;
}
bool notroot(int x)
{
return (ch[fa[x]][0]==x) || (ch[fa[x]][1]==x);
}
这块还是比较好理解的。
下面就是和平衡树\(splay\)很接近的两个操作了,\(rotate\)和\(splay\)
需要注意的是,这里的\(rotate\)需要判断\(y\)是不是\(root\),而且\(splay\)的时候,需要先下放一些修改标记(按照从上到下的顺序下放)
void rotate(int x)
{
int y=fa[x],z=fa[y];
int b=son(x),c=son(y);
if(notroot(y)) ch[z][c]=x;
fa[x]=z;
ch[y][b]=ch[x][!b];
fa[ch[x][!b]]=y;
ch[x][!b]=y;
fa[y]=x;
update(y);
update(x);
//cout<<1<<endl;
}
void splay(int x)
{
int y=x,cnt=0;
st[++cnt]=y;
while(notroot(y)){y=fa[y];st[++cnt]=y;}
while (cnt) pushdown(st[cnt--]);
while (notroot(x))
{
int y=fa[x],z=fa[y];
int b=son(x),c=son(y);
if (!notroot(y)) rotate(x);
else
//if (notroot(y))
{
if (b==c)
{
rotate(y);
rotate(x);
}
else
{
rotate(x);
rotate(x);
}
}
//cout<<1<<endl;
}
update(x);
}
下面就是\(LCT\)的核心操作\(access\)
\(access(x)\)表示将根到x的路径都打通,也就是弄到同一个\(splay\)里面,具体的话,就是每次每次转到splay的顶部,然后连边,顺便\(update\)
void access(int x)
{
for (int y=0;x;y=x,x=fa[x])
{
splay(x);
ch[x][1]=y;
update(x);
}
}
其他操作就不在这里体现了
QWQ
那么回归这个题,其实如果了解了\(LCT\)的相关操作话,这就是一个LCT的模板题
所以直接上代码了
// luogu-judger-enable-o2
#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstring>
#include<vector>
#include<queue>
#include<cmath>
#include<map>
#include<set>
using namespace std;
inline int read()
{
int x=0,f=1;char ch=getchar();
while (!isdigit(ch)) {if (ch=='-') f=-1;ch=getchar();}
while (isdigit(ch)) {x=(x<<1)+(x<<3)+ch-'0';ch=getchar();}
return x*f;
}
const int maxn = 1e6+1e2;
int fa[maxn],ch[maxn][3];
int rev[maxn],sum[maxn];
int n,m;
int val[maxn];
int st[maxn];
int son(int x)
{
if (ch[fa[x]][0]==x)
return 0;
else return 1;
}
bool notroot(int x)
{
return (ch[fa[x]][0]==x) || (ch[fa[x]][1]==x);
}
void update(int x)
{
sum[x]=sum[ch[x][0]]^sum[ch[x][1]]^val[x];
}
void reverse(int x)
{
swap(ch[x][0],ch[x][1]);
rev[x]^=1;
}
void pushdown(int x)
{
if (rev[x])
{
if (ch[x][0]) reverse(ch[x][0]);
if (ch[x][1]) reverse(ch[x][1]);
rev[x]=0;
}
}
void rotate(int x)
{
int y=fa[x],z=fa[y];
int b=son(x),c=son(y);
if(notroot(y)) ch[z][c]=x;
fa[x]=z;
ch[y][b]=ch[x][!b];
fa[ch[x][!b]]=y;
ch[x][!b]=y;
fa[y]=x;
update(y);
update(x);
//cout<<1<<endl;
}
void splay(int x)
{
int y=x,cnt=0;
st[++cnt]=y;
while(notroot(y)){y=fa[y];st[++cnt]=y;}
while (cnt) pushdown(st[cnt--]);
while (notroot(x))
{
int y=fa[x],z=fa[y];
int b=son(x),c=son(y);
if (!notroot(y)) rotate(x);
else
//if (notroot(y))
{
if (b==c)
{
rotate(y);
rotate(x);
}
else
{
rotate(x);
rotate(x);
}
}
//cout<<1<<endl;
}
update(x);
}
void access(int x)
{
for (int y=0;x;y=x,x=fa[x])
{
splay(x);
ch[x][1]=y;
update(x);
}
}
void makeroot(int x)
{
access(x);
//splay(x);
reverse(x);
}
int findroot(int x)
{
access(x);
splay(x);
while (ch[x][0])
{
pushdown(x);
x=ch[x][0];
}
//splay(x);
return x;
}
void split(int x,int y)
{
makeroot(x);
access(y);
splay(y);
}
void link(int x,int y)
{
makeroot(x);
if (findroot(y)!=x) fa[x]=y;
}
void cut(int x,int y)
{
split(x,y);
if (ch[x][0] || ch[x][1] ||fa[x]!=y || ch[y][son(x)^1]) return;
fa[x]=ch[y][0]=0;
}
int main()
{
n=read(),m=read();
for (int i=1;i<=n;i++) val[i]=read();
for (int i=1;i<=m;i++)
{
int opt=read(),x=read(),y=read();
if(opt==0)
{
split(x,y);
printf("%d\n",sum[y]);
}
if(opt==1)
{
link(x,y);
}
if (opt==2)
{
cut(x,y);
}
if (opt==3)
{
splay(x);
val[x]=y;
}
}
return 0;
}
LCT模板(学习笔记)(洛谷3690)(加边,删边,修改点权)的更多相关文章
- 边带权并查集 学习笔记 & 洛谷P1196 [NOI2002] 银河英雄传说 题解
花了2h总算把边带权并查集整明白了qaq 1.边带权并查集的用途 众所周知,并查集擅长维护与可传递关系有关的信息.然而我们有时会发现并查集所维护的信息不够用,这时"边带权并查集"就 ...
- 斜率优化dp学习笔记 洛谷P3915[HNOI2008]玩具装箱toy
本文为原创??? 作者写这篇文章的时候刚刚初一毕业…… 如有错误请各位大佬指正 从例题入手 洛谷P3915[HNOI2008]玩具装箱toy Step0:读题 Q:暴力? 如果您学习过dp 不难推出d ...
- 快速沃尔什变换(FWT)学习笔记 + 洛谷P4717 [模板]
FWT求解的是一类问题:\( a[i] = \sum\limits_{j\bigoplus k=i}^{} b[j]*c[k] \) 其中,\( \bigoplus \) 可以是 or,and,xor ...
- STL Stack(栈)学习笔记 + 洛谷 P1449 后缀表达式
稍微看了看刘汝佳的白皮书,“实用主义”的STL实在是香到我了,而且在实验室大佬的推荐下我开始了stl的学习. 每篇附带一个题目方便理解,那行,直接开始. 毕竟是实用主义,所以就按照给的题目的例子来理解 ...
- STL Queue(队列)学习笔记 + 洛谷 P1540 机器翻译
队(Queue) 队简单来说就是一个先进先出的“栈”,但是不同于标准“栈”的先进后出. 基本操作: push(x) 将x压入队列的末端 pop() 弹出队列的第一个元素(队顶元素),注意此函数并不返回 ...
- 最小生成树 & 洛谷P3366【模板】最小生成树 & 洛谷P2820 局域网
嗯... 理解生成树的概念: 在一幅图中将所有n个点连接起来的n-1条边所形成的树. 最小生成树: 边权之和最小的生成树. 最小瓶颈生成树: 对于带权图,最大权值最小的生成树. 如何操作? 1.Pri ...
- [置顶] iOS学习笔记47——图片异步加载之EGOImageLoading
上次在<iOS学习笔记46——图片异步加载之SDWebImage>中介绍过一个开源的图片异步加载库,今天来介绍另外一个功能类似的EGOImageLoading,看名字知道,之前的一篇学习笔 ...
- Flutter学习笔记(19)--加载本地图片
如需转载,请注明出处:Flutter学习笔记(19)--加载本地图片 上一篇博客正好用到了本地的图片,记录一下用法: 首先新建一个文件夹,这个文件夹要跟目录下 然后在pubspec.yaml里面声明出 ...
- LCT总结——概念篇+洛谷P3690[模板]Link Cut Tree(动态树)(LCT,Splay)
为了优化体验(其实是强迫症),蒟蒻把总结拆成了两篇,方便不同学习阶段的Dalao们切换. LCT总结--应用篇戳这里 概念.性质简述 首先介绍一下链剖分的概念(感谢laofu的讲课) 链剖分,是指一类 ...
- AC自动机模板3【洛谷3796】
AC自动机的第三个模板 其实,个人觉得,目前我写的这三个不同的模板完全是可以合并在一起求解的. 只是,在这两个无关联的OJ上,同一个AC自动机都可以完成的问题被拆成了三道题而已. 因此,代码只需要略加 ...
随机推荐
- 新东方APP技术架构演进, 分布式系统架构经验分享
今天的演讲题目是"新东方APP技术架构演进, C端技术经验分享" 作者:张建鑫, 曾任IBM高级软件架构师, 滴滴高级技术专家, 现任新东方集团高级技术总监 古代东西方的思想家都产 ...
- 一个double free相关问题的澄清
引言 前一阵定位 Oracle 的 OCI 接口相关的一个内存释放问题,在网上看到了链接如下的这篇文章: 一个C++bug引入的许多知识 看到后面说 vector 里的两个单元里的内部成员指针地址是一 ...
- 发布 mbtiles 存储的矢量瓦片
之前我们分享过如何 在本地发布OSM矢量瓦片地图,里面介绍了生成的矢量瓦片会存放在 .mbtiles 文件中,然后用 tileserver-gl 软件发布. mbtiles 是基于sqllite数据库 ...
- TCP/IP以及Socket聊天室带类库源码分享
TCP/IP以及Socket聊天室带类库源码分享 最近遇到个设备,需要去和客户的软件做一个网络通信交互,一般的我们的上位机都是作为客户端来和设备通信的,这次要作为服务端来监听客户端,在这个背景下,我查 ...
- 基于Linux系统ipython和集成开发环境Pycharm的安装
1.简介 Python是一门跨平台的开源.免费的.解释型.面向对象.带有动态语义的脚本语言,同时也支持伪编译以进行优化和提高运行速度,还支持使用py2exe工具将Python程序转换为exe可执行程序 ...
- 学习Tomcat(一)之容器概览
Tomcat是Apache软件基金会的一个顶级项目,由Apache.Sun和其它一些公司及个人共同开发,是目前比较流行的Web服务器之一.Tomcat是一个开源的.小型的轻量级应用服务器,具有占用系统 ...
- LinkedList 添加元素源码解析
jdk版本:1.8 LinkedList添加元素有两个方法:add(E e)和add(int index,E e). add(E e) /** * Appends the specified elem ...
- Linux详细安装流程(直接看图)
准备工作:一台电脑.sentOS镜像文件. 一.首先打开虚拟机,点击文件--新建虚拟机 二.选择自定义,然后点击下一步
- hyperf从零开始构建微服务(二)——构建服务消费者
阅读目录 构建服务消费者 安装json rpc依赖 安装JSON RPC客户端 server配置 编写业务代码 编写服务消费者类 consumer配置 配置 UserServiceInterface ...
- javassist 使用笔记
javassist Javassist 是一个开源的分析.编辑和创建Java字节码的类库.其主要的优点,在于简单,而且快速.直接使用 java 编码的形式,而不需要了解虚拟机指令,就能动态改变类的结构 ...