Solution -「CF 855G」Harry Vs Voldemort
\(\mathcal{Description}\)
Link.
给定一棵 \(n\) 个点的树和 \(q\) 次加边操作。求出每次操作后,满足 \(u,v,w\) 互不相等,路径 \((u,w)\) 与 \((v,w)\) 无重复边的有序三元组 \((u,v,w)\) 的个数。
\(n,q\le10^5\)。
\(\mathcal{Solution}\)
考虑原树上,以某个点为 \(w\) 的贡献。记 \(\operatorname{contr}(u)\) 为 \(u\) 的贡献,则有:
\]
又发现一个边双中的每个点都应是等价的。所以对于以 \(u\) 为顶点的边双,维护 \(val_u=\sum_{v\in son_u}siz_v^2\) 和大小 \(s_u\),我们也能求出它的贡献:
\]
加边时,暴力爬树,并用并查集维护连通边双即可。
复杂度 \(\mathcal O(n\log n)\)(并查集不带启发式合并)。
\(\mathcal{Code}\)
#include <cstdio>
#include <assert.h>
typedef long long LL;
const int MAXN = 1e5;
int n, ecnt, head[MAXN + 5];
int fa[MAXN + 5], dep[MAXN + 5], siz[MAXN + 5], blk[MAXN + 5];
LL ans, val[MAXN + 5];
struct Edge { int to, nxt; } graph[MAXN * 2 + 5];
inline void link ( const int s, const int t ) {
graph[++ ecnt] = { t, head[s] };
head[s] = ecnt;
}
inline char fgc () {
static char buf[1 << 17], *p = buf, *q = buf;
return p == q && ( q = buf + fread ( p = buf, 1, 1 << 17, stdin ), p == q ) ? EOF : *p ++;
}
inline int rint () {
int x = 0; char d = fgc ();
for ( ; d < '0' || '9' < d; d = fgc () );
for ( ; '0' <= d && d <= '9'; d = fgc () ) x = x * 10 + ( d ^ '0' );
return x;
}
inline void wint ( const LL x ) {
if ( 9 < x ) wint ( x / 10 );
putchar ( x % 10 ^ '0' );
}
struct DSU {
int fa[MAXN + 5];
inline void init () { for ( int i = 1; i <= n; ++ i ) fa[i] = i; }
inline int find ( const int x ) { return x ^ fa[x] ? fa[x] = find ( fa[x] ) : x; }
inline bool unite ( int x, int y ) {
x = find ( x ), y = find ( y );
return x ^ y ? fa[x] = y, true : false;
}
} dsu;
inline void init ( const int u ) {
siz[u] = blk[u] = 1;
for ( int i = head[u], v; i; i = graph[i].nxt ) {
if ( ( v = graph[i].to ) ^ fa[u] ) {
dep[v] = dep[fa[v] = u] + 1, init ( v );
siz[u] += siz[v];
val[u] += 1ll * siz[v] * siz[v];
}
}
}
inline void calc ( const int u, const int k ) {
assert ( u == dsu.fa[u] );
int s = blk[u];
ans += 1ll * k * s * ( 1ll * ( n - s ) * ( n - s ) - val[u] - 1ll * ( n - siz[u] ) * ( n - siz[u] ) );
ans += 2ll * k * s * ( s - 1 ) * ( n - s );
ans += 1ll * k * s * ( s - 1 ) * ( s - 2 );
}
inline void merge ( const int u, const int v ) {
assert ( u == dsu.fa[u] && v == dsu.fa[v] && dep[u] < dep[v] );
calc ( u, -1 ), calc ( v, -1 );
val[u] -= 1ll * siz[v] * siz[v], val[u] += val[v], blk[u] += blk[v];
calc ( u, 1 ), dsu.unite ( v, u );
}
int main () {
n = rint (), dsu.init ();
for ( int i = 1, u, v; i < n; ++ i ) {
u = rint (), v = rint ();
link ( u, v ), link ( v, u );
}
init ( 1 );
for ( int i = 1; i <= n; ++ i ) calc ( i, 1 );
wint ( ans ), putchar ( '\n' );
for ( int q = rint (), u, v; q --; ) {
u = rint (), v = rint ();
while ( dsu.find ( u ) ^ dsu.find ( v ) ) {
if ( dep[dsu.find ( u )] < dep[dsu.find ( v )] ) u ^= v ^= u ^= v;
u = dsu.find ( u );
merge ( dsu.find ( fa[u] ), u );
}
wint ( ans ), putchar ( '\n' );
}
return 0;
}
Solution -「CF 855G」Harry Vs Voldemort的更多相关文章
- Solution -「CF 1342E」Placing Rooks
\(\mathcal{Description}\) Link. 在一个 \(n\times n\) 的国际象棋棋盘上摆 \(n\) 个车,求满足: 所有格子都可以被攻击到. 恰好存在 \(k\ ...
- Solution -「CF 1622F」Quadratic Set
\(\mathscr{Description}\) Link. 求 \(S\subseteq\{1,2,\dots,n\}\),使得 \(\prod_{i\in S}i\) 是完全平方数,并最 ...
- Solution -「CF 923F」Public Service
\(\mathscr{Description}\) Link. 给定两棵含 \(n\) 个结点的树 \(T_1=(V_1,E_1),T_2=(V_2,E_2)\),求一个双射 \(\varph ...
- Solution -「CF 923E」Perpetual Subtraction
\(\mathcal{Description}\) Link. 有一个整数 \(x\in[0,n]\),初始时以 \(p_i\) 的概率取值 \(i\).进行 \(m\) 轮变换,每次均匀随机 ...
- Solution -「CF 1586F」Defender of Childhood Dreams
\(\mathcal{Description}\) Link. 定义有向图 \(G=(V,E)\),\(|V|=n\),\(\lang u,v\rang \in E \Leftrightarr ...
- Solution -「CF 1237E」Balanced Binary Search Trees
\(\mathcal{Description}\) Link. 定义棵点权为 \(1\sim n\) 的二叉搜索树 \(T\) 是 好树,当且仅当: 除去最深的所有叶子后,\(T\) 是满的: ...
- Solution -「CF 623E」Transforming Sequence
题目 题意简述 link. 有一个 \(n\) 个元素的集合,你需要进行 \(m\) 次操作.每次操作选择集合的一个非空子集,要求该集合不是已选集合的并的子集.求操作的方案数,对 \(10^9 ...
- Solution -「CF 1023F」Mobile Phone Network
\(\mathcal{Description}\) Link. 有一个 \(n\) 个结点的图,并给定 \(m_1\) 条无向带权黑边,\(m_2\) 条无向无权白边.你需要为每条白边指定边权 ...
- Solution -「CF 599E」Sandy and Nuts
\(\mathcal{Description}\) Link. 指定一棵大小为 \(n\),以 \(1\) 为根的有根树的 \(m\) 对邻接关系与 \(q\) 组 \(\text{LCA}\ ...
随机推荐
- JSP页面中最常使用的脚本元素
注:图片如果损坏,点击文章链接:https://www.toutiao.com/i6513082449755374093/ 前面简单说了一个<JSP页面实际上就是Servlet>,接下来说 ...
- markdown mermaid状态图
状态图 状态图是一种用于计算机科学和相关领域描述系统行为的图.状态图要求描述的系统由有限数量的状态组成. 语法: stateDiagram-v2 [*] --> Still Still --&g ...
- 服务器表单字符串转化Vue表单挂在到对应DOM节点
今天在项目开发中,遇到从后端返回的vue文件(包含template,js,css)的文件,试过用v-html解析文件,渲染到页面,但是无法渲染,后来去查了一堆资料,自己写了一个全局方法来解析这类文件 ...
- EF中使用事务
using (var db = new dbEntities()) { //第一个坑,需要手动open db.Database.Connection.Open(); using (var tran = ...
- IExposedPropertyTable与ExposedReference的使用
近期回顾Dead of the Book demo时,看见了它们的运用.感觉主要是用于ScriptableObject资源和Scene资源解耦: 并将这类做法规范化. 做一个小测试,IExposedP ...
- CMake语法—内置变量
目录 CMake语法-内置变量 1 CMake变量分类 1.1 普通变量 1.2 缓存变量 1.3 环境变量 1.4 内置变量 2 CMake内置变量分类 2.1 提供信息的变量 2.2 改变行为的变 ...
- 关于3G移动通信网络中用户ip的配置过程的研究(中国电信cdma2000)
在RP口对ppp过程进行研究 PPP协商过程,如下图所示: 在建立ppp过程中pdsn需要与FAAA.HAAA交互.同时在分组数据业务进行过程中这种交互更加频繁,介绍如下,分为两种情况,简单ip,移动 ...
- 前端基础之CSS(浮动-解决溢出-实现个人头像框)
目录 一:浮动float 1.什么是浮动? 2.浮动的作用 3.浮动有两个特点 4.float格式 二:代码实现左右浮动边框 三:浮动造成父标签塌陷问题(清除浮动) 1.浮动会造成父标签的影响 三:清 ...
- NFS数据共享(全面讲解使用教程)
目录 一:NFS数据共享 1.NFS简介: 2.什么是NFS? 3.NFS的应用 二:NFS数据共享实践 二:NFS配置详解 1.控制文件权限 三:配置文件分类 四:NFS统一用户 1.创建用户(客户 ...
- ES入门三部曲:索引操作,映射操作,文档操作
ES入门三部曲:索引操作,映射操作,文档操作 一.索引操作 1.创建索引库 #语法 PUT /索引名称 { "settings": { "属性名": " ...