Solution -「APIO/CTSC 2007」「洛谷 P3620」数据备份
\(\mathcal{Description}\)
Link.
给定升序序列 \(\{x_n\}\) 以及整数 \(k\),在 \(\{x_n\}\) 中选出恰 \(k\) 对 \((x_i,x_j)\),使得不存在某个值出现次数多于一次,并最小化 \(\sum|x_i-x_j|\)。
\(\mathcal{Solution}\)
告诉我,你有一个错误的贪心 owo!
显然 \((x_i,x_j)\) 是相邻的两个数。令 \(a_i=x_{i+1}-x_i\),问题转化为选 \(k\) 个 \(a_i\) 使其和最小,并保证 \(a_i\) 被选后 \(a_{i-1}\) 和 \(a_{i+1}\) 不被选。
贪心取最小是不可取的,样例就是反例。不过可以使用网络流退流的思想挽救这个贪心。每次取出最小值 \(a_i\) 时,将 \(a_i\) 的值置为 \(a_{i-1}+a_{i+1}-a_i\) 并重新入堆,同时删除在序列上 \(a_{i-1}\) 和 \(a_{i+1}\)(这里的下标加减法指前驱后继,因为有些数已经被删掉了)。考虑再次选择 \(a_i\) 时所表达的方案:
初始:
\]
选 \(a_i\),此时答案 \(ans=a_i\);并重置 \(a_i\),删前驱后继:
\]
再选 \(a_i\),此时答案 \(ans=a_i+a_{i-1}+a_{i+1}-a_i=a_{i-1}+a_{i+1}\),再重置,删除:
\]
可以发现,这与直接选 \(a_{i-2}\) 和 \(a_{i+2}\) 是等效的!所以维护一个双向链表,利用堆进行贪心即可。
复杂度 \(\mathcal O(n\log n)\)。
\(\mathcal{Code}\)
#include <queue>
#include <cstdio>
typedef long long LL;
typedef std::pair<LL, int> pli;
const int MAXN = 1e5;
int n, K, pre[MAXN + 5], suf[MAXN + 5];
LL val[MAXN + 5];
bool rmd[MAXN + 5];
std::priority_queue<pli, std::vector<pli>, std::greater<pli> > heap;
inline int rint () {
int x = 0; char s = getchar ();
for ( ; s < '0' || '9' < s; s = getchar () );
for ( ; '0' <= s && s <= '9'; s = getchar () ) x = x * 10 + ( s ^ '0' );
return x;
}
inline void rmpos ( const int u ) {
if ( ! u || u == n ) return ;
rmd[u] = true;
if ( pre[u] ) suf[pre[u]] = suf[u];
if ( suf[u] ^ n ) pre[suf[u]] = pre[u];
pre[u] = suf[u] = 0;
}
int main () {
n = rint (), K = rint ();
for ( int i = 0, p, las; i < n; ++ i ) {
p = rint ();
if ( i ) {
heap.push ( { val[i] = p - las, i } );
pre[i] = i - 1, suf[i] = i + 1;
}
las = p;
}
LL ans = 0;
val[0] = val[n] = 1ll << 60;
while ( K -- ) {
pli t = heap.top (); heap.pop ();
if ( rmd[t.second] ) { ++ K; continue; }
ans += t.first; LL nv = -t.first;
nv += val[pre[t.second]], rmpos ( pre[t.second] );
nv += val[suf[t.second]], rmpos ( suf[t.second] );
heap.push ( { val[t.second] = nv, t.second } );
}
printf ( "%lld\n", ans );
return 0;
}
Solution -「APIO/CTSC 2007」「洛谷 P3620」数据备份的更多相关文章
- 洛谷P1484 种树&洛谷P3620 [APIO/CTSC 2007]数据备份 题解(堆+贪心)
洛谷P1484 种树&洛谷P3620 [APIO/CTSC 2007]数据备份 题解(堆+贪心) 标签:题解 阅读体验:https://zybuluo.com/Junlier/note/132 ...
- 「区间DP」「洛谷P1043」数字游戏
「洛谷P1043」数字游戏 日后再写 代码 /*#!/bin/sh dir=$GEDIT_CURRENT_DOCUMENT_DIR name=$GEDIT_CURRENT_DOCUMENT_NAME ...
- 洛谷 P3620 [APIO/CTSC 2007]数据备份 解题报告
P3620 [APIO/CTSC 2007]数据备份 题目描述 你在一家 IT 公司为大型写字楼或办公楼(offices)的计算机数据做备份.然而数据备份的工作是枯燥乏味的,因此你想设计一个系统让不同 ...
- P3620 [APIO/CTSC 2007]数据备份
P3620 [APIO/CTSC 2007]数据备份 题目描述 你在一家 IT 公司为大型写字楼或办公楼(offices)的计算机数据做备份.然而数据备份的工作是枯燥乏味的,因此你想设计一个系统让不同 ...
- Solution -「APIO 2016」「洛谷 P3643」划艇
\(\mathcal{Description}\) Link & 双倍经验. 给定 \(n\) 个区间 \([a_i,b_i)\)(注意原题是闭区间,这里只为方便后文描述),求 \(\ ...
- Solution -「JSOI 2019」「洛谷 P5334」节日庆典
\(\mathscr{Description}\) Link. 给定字符串 \(S\),求 \(S\) 的每个前缀的最小表示法起始下标(若有多个,取最小的). \(|S|\le3\time ...
- Solution -「洛谷 P4372」Out of Sorts P
\(\mathcal{Description}\) OurOJ & 洛谷 P4372(几乎一致) 设计一个排序算法,设现在对 \(\{a_n\}\) 中 \([l,r]\) 内的元素排 ...
- Solution -「POI 2010」「洛谷 P3511」MOS-Bridges
\(\mathcal{Description}\) Link.(洛谷上这翻译真的一言难尽呐. 给定一个 \(n\) 个点 \(m\) 条边的无向图,一条边 \((u,v,a,b)\) 表示从 ...
- 「洛谷4197」「BZOJ3545」peak【线段树合并】
题目链接 [洛谷] [BZOJ]没有权限号嘤嘤嘤.题号:3545 题解 窝不会克鲁斯卡尔重构树怎么办??? 可以离线乱搞. 我们将所有的操作全都存下来. 为了解决小于等于\(x\)的操作,那么我们按照 ...
随机推荐
- centos7 系统级别(持续更新)
查看当前系统级别 runlevel 获取当前级别 systemctl get-default centos7中只能通过target来设置.先获取target列表 ls -l /usr/lib/syst ...
- 输出前 n 个Fibonacci数
本题要求编写程序,输出菲波那契(Fibonacci)数列的前N项,每行输出5个,题目保证输出结果在长整型范围内.Fibonacci数列就是满足任一项数字是前两项的和(最开始两项均定义为1)的数列,例如 ...
- python中的sort方法和sorted方法
一.sort()函数 描述 sort() 函数用于对原列表进行排序,如果指定参数,则使用比较函数指定的比较函数. 语法 sort()方法语法: 1 list.sort(cmp=None, key=No ...
- 《剑指offer》面试题18. 删除链表的节点
问题描述 给定单向链表的头指针和一个要删除的节点的值,定义一个函数删除该节点. 返回删除后的链表的头节点. 注意:此题对比原题有改动 示例 1: 输入: head = [4,5,1,9], val = ...
- 《剑指offer》面试题28. 对称的二叉树
问题描述 请实现一个函数,用来判断一棵二叉树是不是对称的.如果一棵二叉树和它的镜像一样,那么它是对称的. 例如,二叉树 [1,2,2,3,4,4,3] 是对称的. 1 / \ 2 ...
- java实现excel表格导入数据库表
导入excel就是一个上传excel文件,然后获取excel文件数据,然后处理数据并插入到数据库的过程 一.上传excel 前端jsp页面,我的是index.jsp 在页面中我自己加入了一个下载上传文 ...
- linux虚拟机快照
目录 一:虚拟机快照 一:虚拟机快照 1.什么是快照? 快照可保存虚拟机在特定时刻的状态和数据. 状态包括虚拟机的电源状态(列如,打开电源,关闭电源,挂起). 数据包括组成虚拟机的所有文件,这包括磁盘 ...
- Shell 脚本进阶,经典用法及其案例
一.条件选择.判断 1.条件选择if (1)用法格式 if 判断条件 1 ; then 条件为真的分支代码 elif 判断条件 2 ; then 条件为真的分支代码 elif 判断条件 3 ; the ...
- 在EntityFrameworkCore中记录EF修改日志,保存,修改字段的原始值,当前值,表名等信息
突发奇想,想把业务修改的所有字段原始值和修改后的值,做一个记录,然后发现使用EF可以非常简单的实现这个功能 覆盖父类中的 SaveShanges() 方法 public new int SaveCha ...
- Linux 配置常用工具?
常用的软件在linux上进行配置: 修改HOSTANME vi /etc/sysconfig/network 修改HOSTNAME和IP的映射 vi /etc/hosts 关闭防火墙 service ...