一、背景

某一日收到上游调用方的反馈,提供的某一个Dubbo接口,每天在固定的时间点被短时间熔断,抛出的异常信息为提供方dubbo线程池被耗尽。当前dubbo接口日请求量18亿次,报错请求94W/天,至此开始了优化之旅。

二、快速应急

2.1 快速定位

首先进行常规的系统信息监控(机器、JVM内存、GC、线程),发现虽稍有突刺,但都在合理范围内,且跟报错时间点对不上,先暂时忽略。

其次进行流量分析,发现每天固定时间点会有流量突增的情况,流量突增的点跟报错的时间点也吻合,初步判断为短时大流量导致。

流量趋势

被降级量

接口99线

三、寻找性能瓶颈点

3.1 接口流程分析

3.1.1 流程图

3.1.2 流程分析

收到请求后调用下游接口,使用hystrix熔断器,熔断时间为500MS;

根据下游接口返回的数据,进行详情数据的封装,第一步先到本地缓存中获取,如果本地缓存没有,则从Redis进行回源,Redis中无则直接返回,异步线程从数据库进行回源。

如果第一步调用下游接口异常,则进行数据兜底,兜底流程为先到本地缓存中获取,如果本地缓存没有,则从Redis进行回源,Redis中无则直接返回,异步线程从数据库进行回源。

3.2 性能瓶颈点排查

3.2.1 下游接口服务耗时比较长

调用链显示,虽然下游接口的P99线在峰值流量时存在突刺,超出1S,但因为熔断超时的设置(熔断时间500MS,coreSize&masSize=50,下游接口平均耗时10MS以下),判断下游接口不是问题的关键点,为进一步排除干扰,在下游服务存在突刺时能快速失败,调整熔断时间为100MS,dubbo超时时间100MS。

3.2.2 获取详情本地缓存无数据,Redis回源

借助调用链平台,第一步分析Redis请求流量,以此来判断本地缓存的命中率,发现Redis的流量是接口流量的2倍,从设计上来说不应该出现这个现象。开始代码Review,发现在有一处逻辑出现了问题。

没有从本地缓存读取,而是直接从Redis中获取了数据,Redis最大响应时间也确实发现了不合理的突刺,继续分析发现Redis响应时间和Dubbo99线突刺情况基本一致,感觉此时已经找到了问题的原因,心中暗喜。

Redis请求流量

服务接口请求流量

Dubbo99线

Redis最大响应时间

3.2.3 获取兜底数据本地缓存无数据,Redis回源

正常

3.2.4 记录请求结果入Redis

因为当前Redis做了资源隔离,且未在DB后台查询到慢日志,此时分析导致Redis变慢的原因有很多,不过其他的都被主观忽略了,注意力都在请求Redis流量翻倍的问题上了,故优先解决3.2.2中的问题。

四、解决方案

4.1 3.3.2中定位的问题上线

上线前Redis请求量

上线后Redis请求量

上线后Redis流量翻倍问题得到解决,Redis最大响应时间突刺有所缓解,但依旧没能彻底解决,说明大流量查询不是最根本的原因。

redis最大响应时间(上线前)

redis最大响应时间(上线后)

4.2 Redis扩容

在Redis异常流量问题解决后,问题并未得到彻底解决,此时能做的就是静下心来,仔细去梳理导致Redis慢的原因,思路主要从以下三个方面:

  • 出现了慢查询

  • Redis服务出现性能瓶颈

  • 客户端配置不合理

基于以上思路,一个个的进行排查;查询Redis慢查询日志,未发现慢查询。

借用调用链平台详细分析慢的Redis命令,没有了大流量导致的慢查询的干扰,问题定位流程很快,大量的耗时请求在setex方法上,偶尔出现查询的慢请求也都是在setex方法之后,根据Redis单线程的特性判断setex是Redis99线突刺的元凶。找到具体语句,定位到具体业务后,首先申请扩容Redis,由6个master扩到8个master。

Redis扩容前

Redis扩容后

从结果上看,扩容基本上没有效果,说明redis服务本身不是性能瓶颈点,此时剩下的一个就是客户端相关配置了。

4.3 客户端参数优化

4.3.1 连接池优化

Redis扩容没有效果,针对客户端可能出现的问题,此时怀疑的点有两个方向。

第一个是客户端在处理Redis集群模式时,对连接的管理上存在BUG,第二个是连接池参数设置不合理,此时源码分析和连接池参数调整同步进行。

4.3.1.1 判断客户端连接管理上是否有BUG

在分析完,客户端处理连接池的源码后,没有问题,跟预想一致,按照槽位缓存连接池,第一个假设被排除,源码如下。

1、setEx
public String setex(final byte[] key, final int seconds, final byte[] value) {
return new JedisClusterCommand<String>(connectionHandler, maxAttempts) {
@Override
public String execute(Jedis connection) {
return connection.setex(key, seconds, value);
}
}.runBinary(key);
} 2、runBinary
public T runBinary(byte[] key) {
if (key == null) {
throw new JedisClusterException("No way to dispatch this command to Redis Cluster.");
} return runWithRetries(key, this.maxAttempts, false, false);
}
3、runWithRetries
private T runWithRetries(byte[] key, int attempts, boolean tryRandomNode, boolean asking) {
if (attempts <= 0) {
throw new JedisClusterMaxRedirectionsException("Too many Cluster redirections?");
} Jedis connection = null;
try { if (asking) {
// TODO: Pipeline asking with the original command to make it
// faster....
connection = askConnection.get();
connection.asking(); // if asking success, reset asking flag
asking = false;
} else {
if (tryRandomNode) {
connection = connectionHandler.getConnection();
} else {
connection = connectionHandler.getConnectionFromSlot(JedisClusterCRC16.getSlot(key));
}
} return execute(connection); } 4、getConnectionFromSlot
public Jedis getConnectionFromSlot(int slot) {
JedisPool connectionPool = cache.getSlotPool(slot);
if (connectionPool != null) {
// It can't guaranteed to get valid connection because of node
// assignment
return connectionPool.getResource();
} else {
renewSlotCache(); //It's abnormal situation for cluster mode, that we have just nothing for slot, try to rediscover state
connectionPool = cache.getSlotPool(slot);
if (connectionPool != null) {
return connectionPool.getResource();
} else {
//no choice, fallback to new connection to random node
return getConnection();
}
}
}

4.3.1.2 分析连接池参数

通过跟中间件团队沟通,以及参考commons-pool2官方文档修改如下;

参数调整后,1S以上的请求量得到减少,但还是存在,上游反馈降级量由每天90万左右降到每天6W个(关于maxWaitMillis设置为200MS后为什么还会有超过200MS的请求,下文有解释)。

参数优化后Reds最大响应时间

参数优化后接口报错量

4.3.2 持续优化

优化不能停止,如何把Redis的所有写入请求降低到200MS以内,此时的优化思路还是调整客户端配置参数,分析Jedis获取连接相关源码;

Jedis获取连接源码

final AbandonedConfig ac = this.abandonedConfig;
if (ac != null && ac.getRemoveAbandonedOnBorrow() &&
(getNumIdle() < 2) &&
(getNumActive() > getMaxTotal() - 3) ) {
removeAbandoned(ac);
} PooledObject<T> p = null; // Get local copy of current config so it is consistent for entire
// method execution
final boolean blockWhenExhausted = getBlockWhenExhausted(); boolean create;
final long waitTime = System.currentTimeMillis(); while (p == null) {
create = false;
p = idleObjects.pollFirst();
if (p == null) {
p = create();
if (p != null) {
create = true;
}
}
if (blockWhenExhausted) {
if (p == null) {
if (borrowMaxWaitMillis < 0) {
p = idleObjects.takeFirst();
} else {
p = idleObjects.pollFirst(borrowMaxWaitMillis,
TimeUnit.MILLISECONDS);
}
}
if (p == null) {
throw new NoSuchElementException(
"Timeout waiting for idle object");
}
} else {
if (p == null) {
throw new NoSuchElementException("Pool exhausted");
}
}
if (!p.allocate()) {
p = null;
} if (p != null) {
try {
factory.activateObject(p);
} catch (final Exception e) {
try {
destroy(p);
} catch (final Exception e1) {
// Ignore - activation failure is more important
}
p = null;
if (create) {
final NoSuchElementException nsee = new NoSuchElementException(
"Unable to activate object");
nsee.initCause(e);
throw nsee;
}
}
if (p != null && (getTestOnBorrow() || create && getTestOnCreate())) {
boolean validate = false;
Throwable validationThrowable = null;
try {
validate = factory.validateObject(p);
} catch (final Throwable t) {
PoolUtils.checkRethrow(t);
validationThrowable = t;
}
if (!validate) {
try {
destroy(p);
destroyedByBorrowValidationCount.incrementAndGet();
} catch (final Exception e) {
// Ignore - validation failure is more important
}
p = null;
if (create) {
final NoSuchElementException nsee = new NoSuchElementException(
"Unable to validate object");
nsee.initCause(validationThrowable);
throw nsee;
}
}
}
}
} updateStatsBorrow(p, System.currentTimeMillis() - waitTime); return p.getObject();

获取连接的大致流程如下:

是否有空闲连接,有空闲连接就直接返回,没有就创建;

创建时如果超出最大连接数,则判断是否有其他线程在创建连接,如果没则直接返回,如果有则等待maxWaitMis时间(其他线程可能创建失败),如果未超出最大连接,则执行创建连接操作(此时获取连接等待时间可能会大于maxWaitMs)。

如果创建不成功,则判断是否是阻塞获取连接,如果不是则直接抛出异常,连接池不够用,如果是则判断maxWaitMillis是否小于0,如果小于0则阻塞等待,如果大于0则阻塞等待maxWaitMillis。

后续就是根据参数来判断是否需要做连接check等。

根据以上流程分析,maxWaitMills目前设置的为200,以上流程加起来最大阻塞时间为400MS,大部分情况为200MS,不应该出现超出400MS的突刺。

此时问题可能出现在创建连接上,因为创建连接比较耗时,且创建时间不定,重点分析是否有这个场景,通过DB后台监控Redis连接情况。

DB后台监控Redis服务连接

分析上图发现,确实在几个时间点(9:00,12:00,19:00...),redis连接数存在上涨情况,跟Redis突刺时间基本吻合。感觉(之前的各种尝试后,已经不敢用确定了)问题到此定位清晰(在突增流量过来时,连接池可用连接满足不了需求,会创建连接,造成请求等待)。

此时的想法是在服务启动时就进行连接池的创建,尽量减少新连接的创建,修改连接池参数vivo.cache.depend.common.poolConfig.minIdle,结果竟然无效???

啥都不说了,开始撸源码,jedis底层使用的是commons-poll2来管理连接的,查看项目中使用的commons-pool2-2.6.2.jar部分源码;

CommonPool2源码

public GenericObjectPool(final PooledObjectFactory<T> factory,
final GenericObjectPoolConfig<T> config) { super(config, ONAME_BASE, config.getJmxNamePrefix()); if (factory == null) {
jmxUnregister(); // tidy up
throw new IllegalArgumentException("factory may not be null");
}
this.factory = factory; idleObjects = new LinkedBlockingDeque<>(config.getFairness()); setConfig(config);
}

竟然发现没有初始化连接的地方,开始咨询中间件团队,中间件团队给出的源码(commons-pool2-2.4.2.jar)如下,方法执行后多了一次startEvictor方法的调用?

1、初始化连接池
public GenericObjectPool(PooledObjectFactory<T> factory,
GenericObjectPoolConfig config) {
super(config, ONAME_BASE, config.getJmxNamePrefix());
if (factory == null) {
jmxUnregister(); // tidy up
throw new IllegalArgumentException("factory may not be null");
}
this.factory = factory;
idleObjects = new LinkedBlockingDeque<PooledObject<T>>(config.getFairness());
setConfig(config);
startEvictor(getTimeBetweenEvictionRunsMillis());
}

为啥不一样???开始检查Jar包,版本不一样,中间件给出的版本是在V2.4.2,项目实际使用的是V2.6.2,分析startEvictor有一步逻辑正是处理连接池预热逻辑。

Jedis连接池预热

1、final void startEvictor(long delay) {
synchronized (evictionLock) {
if (null != evictor) {
EvictionTimer.cancel(evictor);
evictor = null;
evictionIterator = null;
}
if (delay > 0) {
evictor = new Evictor();
EvictionTimer.schedule(evictor, delay, delay);
}
}
}
2、class Evictor extends TimerTask {
/**
* Run pool maintenance. Evict objects qualifying for eviction and then
* ensure that the minimum number of idle instances are available.
* Since the Timer that invokes Evictors is shared for all Pools but
* pools may exist in different class loaders, the Evictor ensures that
* any actions taken are under the class loader of the factory
* associated with the pool.
*/
@Override
public void run() {
ClassLoader savedClassLoader =
Thread.currentThread().getContextClassLoader();
try {
if (factoryClassLoader != null) {
// Set the class loader for the factory
ClassLoader cl = factoryClassLoader.get();
if (cl == null) {
// The pool has been dereferenced and the class loader
// GC'd. Cancel this timer so the pool can be GC'd as
// well.
cancel();
return;
}
Thread.currentThread().setContextClassLoader(cl);
} // Evict from the pool
try {
evict();
} catch(Exception e) {
swallowException(e);
} catch(OutOfMemoryError oome) {
// Log problem but give evictor thread a chance to continue
// in case error is recoverable
oome.printStackTrace(System.err);
}
// Re-create idle instances.
try {
ensureMinIdle();
} catch (Exception e) {
swallowException(e);
}
} finally {
// Restore the previous CCL
Thread.currentThread().setContextClassLoader(savedClassLoader);
}
}
}
3、 void ensureMinIdle() throws Exception {
ensureIdle(getMinIdle(), true);
}
4、 private void ensureIdle(int idleCount, boolean always) throws Exception {
if (idleCount < 1 || isClosed() || (!always && !idleObjects.hasTakeWaiters())) {
return;
} while (idleObjects.size() < idleCount) {
PooledObject<T> p = create();
if (p == null) {
// Can't create objects, no reason to think another call to
// create will work. Give up.
break;
}
if (getLifo()) {
idleObjects.addFirst(p);
} else {
idleObjects.addLast(p);
}
}
if (isClosed()) {
// Pool closed while object was being added to idle objects.
// Make sure the returned object is destroyed rather than left
// in the idle object pool (which would effectively be a leak)
clear();
}
}

修改Jar版本,配置中心增加vivo.cache.depend.common.poolConfig.timeBetweenEvictionRunsMillis(检查一次连接池中空闲的连接,把空闲时间超过minEvictableIdleTimeMillis毫秒的连接断开,直到连接池中的连接数到minIdle为止)。

vivo.cache.depend.common.poolConfig.minEvictableIdleTimeMillis(连接池中连接可空闲的时间,毫秒)两个参数,重启服务后,连接池正常预热,最终从Redis层面上解决问题。

优化结果如下,性能问题基本得到解决;

Redis响应时间(优化前)

Redis响应时间(优化后)

接口99线(优化前)

接口99线(优化后)

五、总结

出现线上问题时,首先要考虑的还是快速恢复线上业务,将业务的影响度降到最低,所以针对线上的业务,要提前做好限流、熔断、降级等策略,在线上出现问题时能快速找到恢复方案。对公司各监控平台的熟练使用程度,决定了定位问题的速度,每个开发都要把熟练使用监控平台(机器、服务、接口、DB等)作为一个基本能力。

Redis出现响应慢时,可以优先从Redis集群服务端(机器负载、服务是否有慢查询)、业务代码(是否有BUG)、客户端(连接池配置是否合理)三个方面去排查,基本上能排查出大部分Redis慢响应问题。

Redis连接池在系统冷启动时,对连接池的预热,不同commons-pool2的版本,冷启动的策略也不同,但都需要配置minEvictableIdleTimeMillis参数才会生效,可以看下common-pool2官方文档,对常用参数都做到心中有数,在问题出现时能快速定位。

连接池默认参数在解决大流量的业务上稍显乏力,需要针对大流量场景进行调优处理,如果业务上流量不是很大直接使用默认参数即可。

具体问题要具体分析,不能解决问题的时候要变通思路,通过各种方法去尝试解决问题。

作者:vivo互联网服务器团队-Wang Shaodong

十亿级流量下,我与Redis时延小突刺的战斗史的更多相关文章

  1. 【高并发】亿级流量场景下如何为HTTP接口限流?看完我懂了!!

    写在前面 在互联网应用中,高并发系统会面临一个重大的挑战,那就是大量流高并发访问,比如:天猫的双十一.京东618.秒杀.抢购促销等,这些都是典型的大流量高并发场景.关于秒杀,小伙伴们可以参见我的另一篇 ...

  2. 亿级流量场景下,大型缓存架构设计实现【1】---redis篇

    *****************开篇介绍**************** -------------------------------------------------------------- ...

  3. Netty Redis 亿级流量 高并发 实战 (长文 修正版)

    目录 疯狂创客圈 Java 分布式聊天室[ 亿级流量]实战系列之 -30[ 博客园 总入口 ] 写在前面 1.1. 快速的能力提升,巨大的应用价值 1.1.1. 飞速提升能力,并且满足实际开发要求 1 ...

  4. 亿级流量场景下,大型架构设计实现【2】---storm篇

    承接之前的博:亿级流量场景下,大型缓存架构设计实现 续写本博客: ****************** start: 接下来,我们是要讲解商品详情页缓存架构,缓存预热和解决方案,缓存预热可能导致整个系 ...

  5. 亿级用户下的新浪微博平台架构 前端机(提供 API 接口服务),队列机(处理上行业务逻辑,主要是数据写入),存储(mc、mysql、mcq、redis 、HBase等)

    https://mp.weixin.qq.com/s/f319mm6QsetwxntvSXpKxg 亿级用户下的新浪微博平台架构 炼数成金前沿推荐 2014-12-04 序言 新浪微博在2014年3月 ...

  6. java亿级流量电商详情页系统的大型高并发与高可用缓存架构实战视频教程

    亿级流量电商详情页系统的大型高并发与高可用缓存架构实战 完整高清含源码,需要课程的联系QQ:2608609000 1[免费观看]课程介绍以及高并发高可用复杂系统中的缓存架构有哪些东西2[免费观看]基于 ...

  7. 【架构师之路】Nginx负载均衡与反向代理—《亿级流量网站架构核心技术》

    本篇摘自<亿级流量网站架构核心技术>第二章 Nginx负载均衡与反向代理 部分内容. 当我们的应用单实例不能支撑用户请求时,此时就需要扩容,从一台服务器扩容到两台.几十台.几百台.然而,用 ...

  8. SpringCloud 亿级流量 架构演进

    疯狂创客圈 Java 高并发[ 亿级流量聊天室实战]实战系列 [博客园总入口 ] 架构师成长+面试必备之 高并发基础书籍 [Netty Zookeeper Redis 高并发实战 ] 前言 Crazy ...

  9. 12. 亿级流量电商系统JVM模型参数二次优化

    亿级流量电商系统JVM模型参数预估方案,在原来的基础上采用ParNew+CMS垃圾收集器 一.亿级流量分析及jvm参数设置 1. 需求分析 大促在即,拥有亿级流量的电商平台开发了一个订单系统,我们应该 ...

随机推荐

  1. 一文带你全面了解java对象的序列化和反序列化

    摘要:这篇文章主要给大家介绍了关于java中对象的序列化与反序列化的相关内容,文中通过详细示例代码介绍,希望能对大家有所帮助. 本文分享自华为云社区<java中什么是序列化和反序列化?>, ...

  2. window下批量删除指定后缀文件

    例子: 批量删除当前路径下后缀为 .jpg和 .json del /a /f /s /q "*.jpg" "*.json" *为通配符/a /f 是强制删除所有 ...

  3. Java筑基 - JNI到底是个啥

    在前面介绍Unsafe的文章中,简单的提到了java中的本地方法(Native Method),它可以通过JNI(Java Native Interface)调用其他语言中的函数来实现一些相对底层的功 ...

  4. Django(6)自定义路由转换器

    自定义路径转换器 有时候上面的内置的url转换器并不能满足我们的需求,因此django给我们提供了一个接口可以让我们自己定义自己的url转换器 django内置的路径转换器源码解析 在我们自定义路由转 ...

  5. CodeForces - 879

    A 题意:就是一共有n个医生,每个医生上班的时间是第Si天,之后每隔d天去上班,问最少多少天能够访问完这n名医生 思路:直接进攻模拟就可以 代码: 1 #include<iostream> ...

  6. QFNU 10-30 training

    7-9 特立独行的幸福 题意:见PTA 思路:其实就是遍历进行查找,利用递归函数,为了解决是特立独行,还要用一个全局数组进行存储所有满足条件的数进行去重标记,最后在输出的时候进行判断是否是只读取过一次 ...

  7. springboot+Thymeleaf+layui 实现分页

    layui分页插件 引入相关的js和css layui:css <link rel="stylesheet" th:href="@{layui/css/layui. ...

  8. 二进制格式安装MySQL

    二进制格式安装MySQL 下载二进制格式的mysql软件包 下载二进制格式的 mysql 软件包 [root@localhost ~]# cd /usr/src/ [root@localhost sr ...

  9. CGI开发-(转自 jemofh159)

    随着Internet技术的兴起,在嵌入式设备的管理与交互中,基于Web方式的应用成为目前的主流,这种程序结构也就是大家非常熟悉的B/S结构,即在嵌入式设备上运行一个支持脚本或CGI功能的Web服务器, ...

  10. 8.5-7 mkfs、dumpe2fs、resize2fs

    8.5 mkfs:创建Linux文件系统     mkfs命令用于在指定的设备(或硬盘分区等)上创建格式化并创建文件系统,fdisk和parted等分区工具相当于建房的人,把房子(硬盘),分成几居室( ...