堆原理解析

堆一般指二叉堆。是使用完全二叉树这种数据结构构建的一种实际应用。通过它的特性,分为最大堆和最小堆两种。

如上图可知,最小堆就是在这颗二叉树中,任何一个节点的值比其所在子树的任意一个节点都要小。最大堆就是在这颗二叉树中,任何一个节点的值都比起所在子树的任意一个节点值都要大。

那么如何构建一个堆呢?首先要将所有的元素构建为一个完全二叉树。完全二叉树是指除叶子节点,所有层级是满节点,叶子节点从左向右排列填满

在一个完全二叉树中,将数据重新按照堆的的特性排列,就可以将完全二叉树变成一个堆。这个过程叫做“堆化”。

在堆中,我们要删除一个元素一般从堆顶删除(可以取到最大值/最小值)。删除之后,数据集就不能算作一个堆了,因为最顶层的元素没有了,数据集不符合完全二叉树的定义。这时,我们需要将堆的数据进行重新排列,也就是重新“堆化”。同样的,在堆中新添加一个元素也需要重新做“堆化”的操作,来将数据集恢复到满足堆定义的状态

所以,在堆这种数据结构中,最重要的是“堆化”的这个算法操作。其次,堆化数据如何存储也是很重要的。接下来,详细说一下。

完全二叉树的存储方式

对于二叉树来说,存储方式有2种,一种使用数组的形式来存储,一种使用链表的方式存储。同样的,这两种方式继承了这两种数据结构的坏处和好处。链表的方式相对浪费存储空间,因为要存储左右子树的指针,但扩缩容方便。而数组更加节省空间,更加方便定位节点,缺点则是扩缩容不便。

我们以数组的方式来做示例,了解存储的细节:

我们不用 \(index = 0\) 的位置来存储数据,而是从 \(index = 1\) 开始,这样,对于任意一个节点 \(i\) 来说,就有 左节点 \(2*i\),右节点 \(2*i+1\),而父节点就是 \(\frac i 2\)。

堆的操作

我们先介绍两种常用的堆操作:pop & push,添加一个元素和删除一个元素。

假如我们有如下的一个最大堆,当我们添加了一个元素之后,就需要做“堆化”,使得堆满足定义。

这种从堆底向上堆化的过程,叫做“从下到上堆化”。我把这个过程实现为代码,如下:

// 从下到上堆化
func (h *Heap) downToUpHeapify(pos int) {
for pos / 2 > 0 && h.data[pos/2].Less(h.data[pos]) { // 如果存在父节点 & 值大于父节点
h.swap(pos, pos/2) // 交换两个值的位置
pos = pos /2 // 将操作节点变为父节点的位置
}
}

当我们想要从堆顶 pop 一个元素的时候。我们需要先将元素pop,然后把堆中最后一个元素放到堆顶,然后进行一次“堆化”。

这种从堆顶向下堆化的过程,叫做“从上到下堆化”。我把这个过程实现为代码,如下:

// 从上到下堆化
func (h *Heap) upToDownHeapify() {
max := h.len
i := 1
pos := i
for {
if i * 2 <= max && h.data[i].Less(h.data[i*2]) { // 如果有左子树,且自己小于左子树
pos = i*2
} if i *2 +1 <= max && h.data[pos].Less(h.data[i*2+1]) { // 如果有右子树,且自己小于右子树
pos = i*2+1
}
if pos == i { // 如果位置没有变化,说明堆化结束
break
} h.swap(i, pos) // 交换当前位置和下一个位置的内容
i = pos // 操作下一个位置
}
}

Golang 的 container.heap 包

注意,上述的讲述中,为了方便表示,我们在数组的索引0没有存储内容,从索引1开始存储。

而 Golang 的实现中,索引0 是存储了数据的。这样的话,每一个元素的左子树和右子树就分别变成了 \(2*i+1\) 和 \(2*i+2\)。

Golang 的 Container.heap 是一个实现了通用最小堆的包。任何数据集只要实现了其 Interface 接口,即可使用这个包将其堆化,并进行一系列的操作。

type Interface interface {
sort.Interface
Push(x interface{}) // 把元素添加到 Len() 的位置
Pop() interface{} // 删除并返回 Len() - 1 的元素.
} // sort.Interface
type Interface interface {
// Len is the number of elements in the collection.
Len() int
// Less reports whether the element with
// index i should sort before the element with index j.
Less(i, j int) bool
// Swap swaps the elements with indexes i and j.
Swap(i, j int)
}

Interface 的数据结构如上,要求实现 sort.InterfacePush Pop 两个方法。

sort.Interface 的定义,同样贴在了上面,主要是三个方法:

  • Len 返回数据集的长度;
  • Less 返回 index i 是否小于 index j;
  • Swap 交换 index i 和 j 的值;

接下来,我们看一下 Push 操作

func Push(h Interface, x interface{}) {
h.Push(x) // 向数据集添加一个元素
up(h, h.Len()-1) // 从下向上堆化
} // 从下向上堆化的内容
func up(h Interface, j int) {
// h 表示堆,j 代表需要堆化的元素 index
for {
i := (j - 1) / 2 // 定义 j 的父 index
if i == j || !h.Less(j, i) { // 如果两个元素相等 或者 父元素小于当前元素
break // 堆化完成
}
h.Swap(i, j) // 交换父元素和当前元素
j = i // index 变为父元素的 index
}
}

上面在 push 元素之后,做了 “从下到上”的堆化。

接下来,是 Pop 操作:

// 返回堆顶的元素,并删掉它
func Pop(h Interface) interface{} {
n := h.Len() - 1 // 获取最终堆长度(去掉最后一个元素)
h.Swap(0, n) // 交换堆顶和最后一个元素
down(h, 0, n) // 从上到下堆化
return h.Pop() // 弹出最后一个元素
} func down(h Interface, i0, n int) bool {
i := i0 // 堆顶 index
for {
j1 := 2*i + 1 // 左孩子 index
if j1 >= n || j1 < 0 { // j1 大于堆长度 或 溢出
break // 堆化结束
}
j := j1 // j = 左孩子
if j2 := j1 + 1; j2 < n && h.Less(j2, j1) {
// j2 = 右孩子;j 小于堆长度 && 右孩子小于左孩子
j = j2 // j = 2*i + 2 = 右孩子
}
// 上面是从左右孩子选出小的那个,将 index 赋值给 j if !h.Less(j, i) { // 如果 堆顶小于 j , 堆化结束
break
} h.Swap(i, j) // 交换堆顶元素和 j
i = j // 切换到下一个操作 index
} // 返回 元素是否有移动
// 此处是一个特殊设计,用来判断向下堆化是否真的有操作
// 当删除中间的元素时,如果向下堆化没有操作的话,就需要再做向上堆化
return i > i0
}

Golang 还提供了之前原理讲述中没有的方法: Remove Fix

  • Remove 是删除堆中指定元素,不一定是堆顶;
  • Fix 是当某一个元素的值有变化时,用来重新堆化;
func Remove(h Interface, i int) interface{} {
n := h.Len() - 1 // 堆的长度
if n != i { // 如果不是堆顶
h.Swap(i, n) // 交换删除元素 和 最后一个元素
if !down(h, i, n) { // 从上到下堆化
up(h, i) // 如果没有成功,就从下岛上堆化
}
}
return h.Pop() // 弹出最后一个元素
} func Fix(h Interface, i int) {
// i 是值被改变的 index
if !down(h, i, h.Len()) { // 从上到下堆化
up(h, i) // 如果没有成功,就从下岛上堆化
}
}

这里有一个内容需要注意,就是 Remove 中, \(n = Len() -1\) 来表示堆长度,而在 Fix 则使用 \(n = Len()\) 来表示。这是因为 Remove 中,最后一个元素是要被删除掉,所以最终的堆长度是 \(Len() - 1\)。

上面我们已经了解了 Golang 中,对于一个堆的所有操作。只剩下最后一个方法:Init,初始化一个数据集,变成堆。

func Init(h Interface) {
n := h.Len() // n 是堆长度
// i = 最后一个非叶子节点的 index; i >= 堆顶; index 自减
for i := n/2 - 1; i >= 0; i-- {
// 从当前节点开始,从上到下堆化
down(h, i, n)
}
}

根据堆的特性可知,叶子节点不可以从上到下堆化。所以,我们找到最后非叶子节点的索引值,从这里开始做堆化操作。

至此,container.heap 包中的内容就全部讲解完毕。了解了堆的原理之后,其实会发现并不难理解。

堆的应用

在堆排序中,就需要用到堆算法来将数据级堆化,然后一个个的弹出元素,以达到排序的目的。

堆也可以用于实现优先级队列。优先级队列在实际开发过程中有着广泛的应用。在很多时候,都可以用它来实现处理带优先级的事件,处理定时任务等等。

Golang Heap 源码剖析的更多相关文章

  1. golang channel 源码剖析

    channel 在 golang 中是一个非常重要的特性,它为我们提供了一个并发模型.对比锁,通过 chan 在多个 goroutine 之间完成数据交互,可以让代码更简洁.更容易实现.更不容易出错. ...

  2. Golang 源码剖析:log 标准库

    Golang 源码剖析:log 标准库 原文地址:Golang 源码剖析:log 标准库 日志 输出 2018/09/28 20:03:08 EDDYCJY Blog... 构成 [日期]<空格 ...

  3. STL"源码"剖析-重点知识总结

    STL是C++重要的组件之一,大学时看过<STL源码剖析>这本书,这几天复习了一下,总结出以下LZ认为比较重要的知识点,内容有点略多 :) 1.STL概述 STL提供六大组件,彼此可以组合 ...

  4. 【转载】STL"源码"剖析-重点知识总结

    原文:STL"源码"剖析-重点知识总结 STL是C++重要的组件之一,大学时看过<STL源码剖析>这本书,这几天复习了一下,总结出以下LZ认为比较重要的知识点,内容有点 ...

  5. (原创滴~)STL源码剖析读书总结1——GP和内存管理

    读完侯捷先生的<STL源码剖析>,感觉真如他本人所说的"庖丁解牛,恢恢乎游刃有余",STL底层的实现一览无余,给人一种自己的C++水平又提升了一个level的幻觉,呵呵 ...

  6. STL"源码"剖析

    STL"源码"剖析-重点知识总结   STL是C++重要的组件之一,大学时看过<STL源码剖析>这本书,这几天复习了一下,总结出以下LZ认为比较重要的知识点,内容有点略 ...

  7. STL源码剖析之序列式容器

    最近由于找工作需要,准备深入学习一下STL源码,我看的是侯捷所著的<STL源码剖析>.之所以看这本书主要是由于我过去曾经接触过一些台湾人,我一直觉得台湾人非常不错(这里不涉及任何政治,仅限 ...

  8. STL源码剖析 — 空间配置器(allocator)

    前言 以STL的实现角度而言,第一个需要介绍的就是空间配置器,因为整个STL的操作对象都存放在容器之中. 你完全可以实现一个直接向硬件存取空间的allocator. 下面介绍的是SGI STL提供的配 ...

  9. 豌豆夹Redis解决方案Codis源码剖析:Dashboard

    豌豆夹Redis解决方案Codis源码剖析:Dashboard 1.不只是Dashboard 虽然名字叫Dashboard,但它在Codis中的作用却不可小觑.它不仅仅是Dashboard管理页面,更 ...

随机推荐

  1. Mybatis最终搭建

    框架搭建的流程1. 导入jar2. 准备属性文件和配置文件3. 编写数据库的表和类4. 为类编写一个XxxMapper接口5. 编写接口对应的映射文件XxxMapper.xml6. 根据接口的方法, ...

  2. ImageIo.read 返回null

    一.问题描述 今天收到一个bug就是imageio读取图片会返回null,具体如下 但是其他的图片就没有问题 二.问题分析 结合百度发现这张图片原本的后缀并非是jpg,使用notpard++打开就可以 ...

  3. MySQL分区表最佳实践

    前言: 分区是一种表的设计模式,通俗地讲表分区是将一大表,根据条件分割成若干个小表.但是对于应用程序来讲,分区的表和没有分区的表是一样的.换句话来讲,分区对于应用是透明的,只是数据库对于数据的重新整理 ...

  4. NIOSII IDE在WIN7下 couldn't allocate heap

    首先,所有的文件夹都不能有空格和中文 其次,出现这些SB错误 make -s all includes 3 [main] ? (3732) c:\altera\91\quartus\bin\cygwi ...

  5. 【BUAA 软工个人项目作业】玩转平面几何

    BUAA 软件工程个人项目作业 项目 内容 课程:2020春季软件工程课程博客作业(罗杰,任健) 博客园班级链接 作业:BUAA软件工程个人项目作业 作业要求 课程目标 学习大规模软件开发的技巧与方法 ...

  6. mybatis-plus批量插入saveBatch太慢?我愿意称rewriteBatchedStatements为神

    最近在做项目优化,代码优化之后,测试接口,好家伙.一个定时任务接口执行要10秒左右. 一点点追踪,给每个方法打上执行时间,一点点缩小范围.好家伙,终于让我锁定了目标. 这是mybatis-plus的批 ...

  7. Spring Boot读取自定义外部属性

    测试的环境:Spring Boot2 + Maven +lombok 准备需要用到的基础类: public class People { private String name; private St ...

  8. [DB] mysql windows 安装

    参考 mysql安装 https://www.cnblogs.com/zhangkanghui/p/9613844.html navicat for mysql 中文破解版(无需激活码) https: ...

  9. [BD] Storm

    什么是实时计算 离线计算:批处理,代表MapReduce.Spark Core,采集数据Sqoop.Flume 实时计算:源源不断,代表Storm等,采集数据Flume 框架 Apache Storm ...

  10. [前端] AJAX

    背景 Asynchronous JavaScript And XML:异步js和XML,可实现异步刷新 用途 验证提交的用户名是否已存在 不使用AJAX,需要提交数据后,刷新页面来验证 使用AJAX, ...